Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pept Sci ; 29(7): e3478, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36633503

RESUMO

Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.


Assuntos
Insulina , Receptor de Insulina , Insulina/metabolismo , Dissulfetos/química , Peptídeos/química
2.
J Pept Sci ; 29(4): e3461, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36336650

RESUMO

Insulin is a key hormone involved in the regulation of overall energetic homeostasis of the organism. The dimeric character of the receptor for insulin evokes ideas about its activation or inhibition with peptide dimers that could either trigger or block the structural transition of the insulin receptor, leading to its activation. Herewith, we present the chemical engineering and biological characterization of several series of insulin dimers or dimers of specific peptides that should be able to bind receptors for insulin or insulin growth factor 1. The hormones or peptides in the dimers were interconnected with different linkers, consisting of triazole moieties and 3, 6, 8, 11, or 23 polyethylene glycol units. The prepared dimers were weaker in binding to insulin receptors than human insulin. However, some of the insulin dimers showed preferential binding specificity toward the isoform A of the insulin receptor, and the insulin dimers also stimulated the insulin receptor more strongly than would be consistent with their binding affinities. Our results suggest that designing insulin dimers may be a promising strategy for modulating the ability of the hormone to activate the receptor or to alter its specificity toward insulin receptor isoforms.


Assuntos
Peptídeos , Receptor de Insulina , Humanos , Receptor de Insulina/metabolismo , Peptídeos/química , Insulina/metabolismo , Isoformas de Proteínas , Polietilenoglicóis
3.
Org Biomol Chem ; 20(12): 2446-2454, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35253830

RESUMO

Preptin is a 34-amino-acid-long peptide derived from the E-domain of a precursor of insulin-like growth factor 2 (pro-IGF2) with bone-anabolic and insulin secretion amplifying properties. Here, we describe the synthesis, structures, and biological activities of six shortened analogues of human preptin. Eight- and nine-amino-acid-long peptide amides corresponding to the C-terminal part of human preptin were stabilised by two types of staples to induce a higher proportion of helicity in their secondary structure. We monitored the secondary structure of the stapled peptides using circular dichroism. The biological effect of the structural changes was determined afterwards by the ability of peptides to stimulate the release of intracellular calcium ions. We confirmed the previous observation that the stabilisation of the disordered conformation of human preptin has a deleterious effect on biological potency. However, surprisingly, one of our preptin analogues, a nonapeptide stabilised by olefin metathesis between positions 3 and 7 of the amino acid chain, had a similar ability to stimulate calcium ions' release to the full-length human preptin. Our findings could open up new ways to design new preptin analogues, which may have potential as drugs for the treatment of diabetes and osteoporosis.


Assuntos
Cálcio , Fator de Crescimento Insulin-Like II , Osso e Ossos , Humanos , Fator de Crescimento Insulin-Like II/química , Fragmentos de Peptídeos/química , Peptídeos
4.
J Sep Sci ; 45(17): 3328-3338, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35462458

RESUMO

Chiral CE methods were developed for the elucidation of l- or d-configuration of tyrosine residue in antimicrobial dipeptide ß-alanyl-tyrosine (ß-Ala-Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (ß-Ala-d-Tyr and ß-Ala-l-Tyr), and enantiomers of their amidated and acetylated derivatives, ß-Ala-d,l-Tyr-NH2 and N-Ac-ß-Ala-d,l-Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for ß-Ala-d,l-Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 2.5, and 20 mg/mL 2-hydroxypropyl-ß-cyclodextrin as chiral selector; (ii) for ß-Ala-d,l-Tyr-NH2 enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 3.5, and 30 mg/mL 2-hydroxypropyl-ß-cyclodextrin; and (iii) for enantiomers of N-Ac-ß-Ala-d,l-Tyr in alkaline background electrolyte composed of 50/49 mM Na2 B4 O7 /NaOH, pH 10.5, and 60 mg/mL 2-hydroxypropyl-ß-cyclodextrin. From CE analyses of mixed samples of isolated ß-Ala-Tyr and synthetic standards ß-Ala-l-Tyr and ß-Ala-d-Tyr, it turned out that isolated ß-Ala-Tyr was pure l-enantiomer. In addition, the average apparent binding constants, Kb , and average actual ionic mobilities of the complexes of ß-Ala-d,l-Tyr and its above derivatives with 2-hydroxypropyl-ß-cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6-9.2) × 10-9 m2 /V/s, and anionic mobilities to (-1.3-1.6) × 10-9 m2 /V/s.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Ciclodextrinas/química , Eletrólitos , Eletroforese Capilar/métodos , Concentração de Íons de Hidrogênio , Estereoisomerismo , Trometamina , Tirosina , beta-Ciclodextrinas/química
5.
Anal Bioanal Chem ; 413(17): 4531-4543, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34050775

RESUMO

We adapted a radioligand receptor binding assay for measuring insulin levels in unknown samples. The assay enables rapid and accurate determination of insulin concentrations in experimental samples, such as from insulin-secreting cells. The principle of the method is based on the binding competition of insulin in a measured sample with a radiolabeled insulin for insulin receptor (IR) in IM-9 cells. Both key components, radiolabeled insulin and IM-9 cells, are commercially available. The IR binding assay was used to determine unknown amounts of insulin secreted by MIN6 ß cell line after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. The experimental data obtained by the IR binding assay were compared to the results determined by RIA kits and both methods showed a very good agreement of results. We observed the stimulation of glucose-induced insulin secretion from MIN6 cells by arginine, weaker stimulation by ornithine, but inhibitory effects of dopamine. Serotonin effects were either stimulatory or inhibitory, depending on the concentration of serotonin used. The results will require further investigation. The study also clearly revealed advantages of the IR binding assay that allows the measuring of a higher throughput of measured samples, with a broader range of concentrations than in the case of RIA kits. The IR binding assay can provide an alternative to standard RIA and ELISA assays for the determination of insulin levels in experimental samples and can be especially useful in scientific laboratories studying insulin production and secretion by ß cells and searching for new modulators of insulin secretion.


Assuntos
Secreção de Insulina , Insulina/análise , Insulina/metabolismo , Animais , Arginina/metabolismo , Linhagem Celular , Dopamina/metabolismo , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Ornitina/metabolismo , Radioimunoensaio/métodos , Ensaio Radioligante/métodos , Ratos , Ratos Wistar , Serotonina/metabolismo
6.
Bioorg Chem ; 107: 104548, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358613

RESUMO

Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds. We found that adamantane-derived compounds bind to the insulin receptor more effectively (Kd value of 0.5 µM) than proline-derived compounds (Kd values of 15-38 µM) bearing the same peptides. Molecular dynamics simulations suggest that spacers between peptides and central scaffolds can provide greater flexibility that can contribute to increased binding affinity. Molecular modeling showed possible binding modes of mimetics to the insulin receptor. Our data show that the structure of the central scaffold and flexibility of attached peptides in this type of compound are important and that different scaffolds should be considered when designing peptide hormone mimetics.


Assuntos
Adamantano/química , Insulina/análogos & derivados , Prolina/química , Receptor de Insulina/metabolismo , Animais , Sítios de Ligação , Humanos , Insulina/síntese química , Insulina/metabolismo , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ratos , Receptor de Insulina/química , Técnicas de Síntese em Fase Sólida , Estereoisomerismo
7.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577107

RESUMO

The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide ß-alanyl-tyrosine (ß-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of ß-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of ß-Ala-Tyr and its admixtures have been converted into preparative purification of ß-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the ß-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Dipeptídeos/química , Dipeptídeos/isolamento & purificação , Eletroforese/métodos , Hemolinfa/química , Sarcofagídeos/química , Animais , Cromatografia Líquida de Alta Pressão , Larva/química
8.
J Biol Chem ; 294(46): 17371-17382, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31558604

RESUMO

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.


Assuntos
Fator de Crescimento Insulin-Like I/química , Insulina/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Anormalidades Múltiplas/genética , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Transtornos do Crescimento/genética , Humanos , Insulina/análogos & derivados , Insulina/síntese química , Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/genética , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética , Domínios Proteicos/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
9.
J Labelled Comp Radiopharm ; 63(14): 576-581, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32909277

RESUMO

Preparation of both 125 I-labeled insulin and insulin-like growth factor 1 (IGF-1) was critical because it enabled a detailed characterization of binding properties of these important hormones towards their cognate transmembrane receptors. Binding modes of hundreds of hormone derivatives were analyzed using competition radioligand binding assays. This effort has resulted in development of six insulin analogs that are today clinically used for the treatment of diabetes. Here, we will briefly summarize a history of insulin research employing iodinated hormones.


Assuntos
Insulina/química , Insulina/metabolismo , Animais , Humanos , Marcação por Isótopo
10.
J Biol Chem ; 293(43): 16818-16829, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30213860

RESUMO

Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.


Assuntos
Insulina/agonistas , Insulina/metabolismo , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Cinética , Ligação Proteica , Receptor IGF Tipo 1 , Receptor de Insulina/química , Receptor de Insulina/genética , Receptores de Somatomedina/química , Receptores de Somatomedina/genética
11.
Nature ; 493(7431): 241-5, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23302862

RESUMO

Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer's disease; aberrant signalling occurs in diverse cancers, exacerbated by cross-talk with the homologous type 1 insulin-like growth factor receptor (IGF1R). Despite more than three decades of investigation, the three-dimensional structure of the insulin-insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein. Here we present the first view, to our knowledge, of the interaction of insulin with its primary binding site on the insulin receptor, on the basis of four crystal structures of insulin bound to truncated insulin receptor constructs. The direct interaction of insulin with the first leucine-rich-repeat domain (L1) of insulin receptor is seen to be sparse, the hormone instead engaging the insulin receptor carboxy-terminal α-chain (αCT) segment, which is itself remodelled on the face of L1 upon insulin binding. Contact between insulin and L1 is restricted to insulin B-chain residues. The αCT segment displaces the B-chain C-terminal ß-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is novel within the broader family of receptor tyrosine kinases. We support these findings by photo-crosslinking data that place the suggested interactions into the context of the holoreceptor and by isothermal titration calorimetry data that dissect the hormone-insulin receptor interface. Together, our findings provide an explanation for a wealth of biochemical data from the insulin receptor and IGF1R systems relevant to the design of therapeutic insulin analogues.


Assuntos
Insulina/química , Insulina/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Animais , Sítios de Ligação , Calorimetria , Bovinos , Linhagem Celular , Cristalografia por Raios X , Humanos , Leucina/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
12.
Biochemistry ; 57(16): 2373-2382, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29608283

RESUMO

Insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively) are protein hormones involved not only in normal growth and development but also in life span regulation and cancer. They exert their functions mainly through the IGF-1R or by binding to isoform A of the insulin receptor (IR-A). The development of IGF-1 and IGF-2 antagonists is of great clinical interest. Mutations of A4 and A8 sites of human insulin lead to disproportionate effects on hormone IR binding and activation. Here, we systematically modified IGF-1 sites 45, 46, and 49 and IGF-2 sites 45 and 48, which correspond, or are close, to insulin sites A4 and A8. The IGF-1R and IR-A binding and autophosphorylation potencies of these analogues were characterized. They retained the main IGF-1R-related properties, but the hormones with His49 in IGF-1 and His48 in IGF-2 showed significantly higher affinities for IR-A and for IR-B, being the strongest IGF-1- and IGF-2-like binders of these receptors ever reported. All analogues activated IR-A and IGF-1R without major discrepancies in their binding affinities. This study revealed that IR-A and IGF-1R contain specific sites, likely parts of their so-called sites 2', which can interact differently with specifically modified IGF analogues. Moreover, a clear importance of IGF-2 site 44 for effective hormone folding was also observed. These findings may facilitate novel and rational engineering of new hormone analogues for IR-A and IGF-1R studies and for potential medical applications.


Assuntos
Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like I/química , Receptor de Insulina/química , Receptores de Somatomedina/genética , Evolução Molecular , Humanos , Insulina/química , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , Ligantes , Mutação , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Receptor IGF Tipo 1 , Receptor de Insulina/metabolismo , Receptores de Somatomedina/química , Transdução de Sinais
13.
J Biol Chem ; 292(20): 8342-8355, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28348075

RESUMO

Human insulin is a pivotal protein hormone controlling metabolism, growth, and aging and whose malfunctioning underlies diabetes, some cancers, and neurodegeneration. Despite its central position in human physiology, the in vivo oligomeric state and conformation of insulin in its storage granules in the pancreas are not known. In contrast, many in vitro structures of hexamers of this hormone are available and fall into three conformational states: T6, T3Rf3, and R6 As there is strong evidence for accumulation of neurotransmitters, such as serotonin and dopamine, in insulin storage granules in pancreatic ß-cells, we probed by molecular dynamics (MD) and protein crystallography (PC) if these endogenous ligands affect and stabilize insulin oligomers. Parallel studies independently converged on the observation that serotonin binds well within the insulin hexamer (site I), stabilizing it in the T3R3 conformation. Both methods indicated serotonin binding on the hexamer surface (site III) as well. MD, but not PC, indicated that dopamine was also a good site III ligand. Some of the PC studies also included arginine, which may be abundant in insulin granules upon processing of pro-insulin, and stable T3R3 hexamers loaded with both serotonin and arginine were obtained. The MD and PC results were supported further by in solution spectroscopic studies with R-state-specific chromophore. Our results indicate that the T3R3 oligomer is a plausible insulin pancreatic storage form, resulting from its complex interplay with neurotransmitters, and pro-insulin processing products. These findings may have implications for clinical insulin formulations.


Assuntos
Simulação por Computador , Células Secretoras de Insulina , Insulina , Modelos Biológicos , Neurotransmissores/metabolismo , Multimerização Proteica , Vesículas Secretórias , Serotonina/metabolismo , Humanos , Insulina/química , Insulina/metabolismo , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Simulação de Dinâmica Molecular , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo
14.
J Biol Chem ; 291(40): 21234-21245, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27510031

RESUMO

Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains.


Assuntos
Antígenos CD/química , Fator de Crescimento Insulin-Like II/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Substituição de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Pept Sci ; 23(3): 202-214, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28120383

RESUMO

The rise of CuI-catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in-house preparation of a set of five Fmoc azido amino acids: ß-azido l-alanine and d-alanine, γ-azido l-homoalanine, δ-azido l-ornithine and ω-azido l-lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user-friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3-5, 20, 25, 26, 30 and 43-47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.


Assuntos
Aminoácidos/síntese química , Azidas/química , Química Click/métodos , Fluorenos/síntese química , Peptídeos/síntese química , Alcinos/química , Etilaminas/química , Fluorenos/química , Triazóis/química , Ureia/análogos & derivados , Ureia/química
16.
Biochemistry ; 55(21): 2903-13, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27171135

RESUMO

Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.


Assuntos
Hipoglicemiantes/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Sondas Moleculares/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
17.
Molecules ; 20(10): 19310-29, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512633

RESUMO

We present a trifunctional scaffold designed for the solid-phase synthesis of trimodal compounds. This scaffold holds two alkyne arms in a free and TIPS-protected form for consecutive CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition), one Fmoc-protected hydrazide arm for reaction with aldehydes, and one carboxylic acid arm with CF2 groups for attachment to the resin and (19)F-NMR quantification. This scaffold was attached to a resin and derivatized with model azides and aliphatic, electron-rich or electron-poor aromatic aldehydes. We identified several limitations of the scaffold caused by the instability of hydrazones in acidic conditions, in the presence of copper during CuAAC, and when copper accumulated in the resin. We successfully overcame these drawbacks by optimizing synthetic conditions for the derivatization of the scaffold with aromatic aldehydes. Overall, the new trifunctional scaffold combines CuAAC and hydrazone chemistries, offering a broader chemical space for the development of bioactive compounds.


Assuntos
Cobre/química , Hidrazonas/química , Azidas/química , Catálise , Química Click , Reação de Cicloadição , Mimetismo Molecular , Polietilenoglicóis/química , Técnicas de Síntese em Fase Sólida
18.
Biochemistry ; 53(21): 3392-402, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24819248

RESUMO

The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin-insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states. Sites B3, B5, and B8, capable of affecting the conformation of the N-terminus of the B-chain, were subjects of rational substitutions with amino acids with specific allowed and disallowed dihedral φ and ψ main-chain angles. α-Aminoisobutyric acid was systematically incorporated into positions B3, B5, and B8 for stabilization of the R-state, and N-methylalanine and d-proline amino acids were introduced at position B8 for stabilization of the T-state. IR affinities of the analogues were compared and correlated with their T/R transition ability and analyzed against their crystal and nuclear magnetic resonance structures. Our data revealed that (i) the T-like state is indeed important for the folding efficiency of (pro)insulin, (ii) the R-state is most probably incompatible with an active form of insulin, (iii) the R-state cannot be induced or stabilized by a single substitution at a specific site, and (iv) the B1-B8 segment is capable of folding into a variety of low-affinity T-like states. Therefore, we conclude that the active conformation of the N-terminus of the B-chain must be different from the "classical" T-state and that a substantial flexibility of the B1-B8 segment, where GlyB8 plays a key role, is a crucial prerequisite for an efficient insulin-IR interaction.


Assuntos
Insulina/análogos & derivados , Insulina/química , Ácidos Aminoisobutíricos/química , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
19.
J Biol Chem ; 288(15): 10230-40, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23447530

RESUMO

Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant Phe(B24), one of the key residues of the hormone, in this process remains unclear. For example, the B24 site functionally tolerates substitutions to D-amino acids but not to L-amino acids. Here, we prepared and characterized a series of B24-modified insulin analogues, also determining the structures of [D-HisB24]-insulin and [HisB24]-insulin. The inactive [HisB24]-insulin molecule is remarkably rigid due to a tight accommodation of the L-His side chain in the B24 binding pocket that results in the stronger tethering of B25-B28 residues to the protein core. In contrast, the highly active [D-HisB24]-insulin is more flexible, and the reverse chirality of the B24C(α) atom swayed the D-His(B24) side chain into the solvent. Furthermore, the pocket vacated by Phe(B24) is filled by Phe(B25), which mimics the Phe(B24) side and main chains. The B25→B24 downshift results in a subsequent downshift of Tyr(B26) into the B25 site and the departure of B26-B30 residues away from the insulin core. Our data indicate the importance of the aromatic L-amino acid at the B24 site and the structural invariance/integrity of this position for an effective binding of insulin to its receptor. Moreover, they also suggest limited, B25-B30 only, unfolding of the C terminus of the B-chain upon insulin activation.


Assuntos
Insulina/química , Sítios de Ligação , Humanos , Insulina/genética , Insulina/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptor de Insulina/química , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Relação Estrutura-Atividade
20.
Biochim Biophys Acta ; 1834(8): 1596-606, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23689031

RESUMO

Both cardiovascular disease and liver injury are major public health issues. Hyperhomocysteinemia has been linked to cardiovascular diseases, and defects in methyl group metabolism, often resulting in hyperhomocysteinemia, are among the key molecular events postulated to play a role in liver injury. We employed proteomics and metabolomics analyses of human hepatocytes in primary cell culture to explore the spectrum of proteins and associated metabolites affected by the disruption of methyl group metabolism. We treated the hepatocytes with homocysteine (Hcy, 0.1mM and 2mM) to follow the impact of hyperhomocysteinemia, and in parallel, we used a specific inhibitor of betaine-homocysteine S-methyltransferase (BHMT) to extend our understanding of the physiological functions of the enzyme. The major effect of BHMT inhibition was a 50% decrease in S-adenosylmethionine levels. The treatments with Hcy resulted in multiple changes in the metabolite levels depending on the treatment modality. The BHMT inhibition and 0.1mM Hcy treatment induced only moderate changes in the hepatocyte proteome and secretome, while the changes induced by the 2mM Hcy treatment were extensive. Phosphatidylethanolamine carboxykinase and ornithine aminotransferase were up-regulated about two fold indicating an intervention into metabolism. Cellular proliferation was suspended, secretome composition was changed and signs of apoptosis were discernible. We have detected fibrinogen gamma dimers, which might have a role as a potentially new biomarker of early liver injury. Finally, we have demonstrated the failed maturation of apolipoprotein A1, which might be a new mechanism of disruption of cholesterol efflux from tissues.


Assuntos
Betaína-Homocisteína S-Metiltransferase/antagonistas & inibidores , Neoplasias Colorretais/patologia , Hepatócitos/metabolismo , Hiper-Homocisteinemia/metabolismo , Neoplasias Hepáticas/patologia , Metabolômica , Proteoma/análise , Apolipoproteína A-I/metabolismo , Apoptose , Betaína-Homocisteína S-Metiltransferase/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Eletroforese em Gel Bidimensional , Fibrinogênio/metabolismo , Hepatócitos/efeitos dos fármacos , Homocisteína/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Multimerização Proteica , Proteoma/metabolismo , S-Adenosilmetionina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA