RESUMO
Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, â¼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.
Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Doenças Vestibulares , Humanos , Anormalidades Múltiplas/genética , Doenças Vestibulares/genética , Deficiência Intelectual/genética , Face/anormalidades , Face/patologia , Proteínas de Ligação a DNA/genética , Masculino , Feminino , Doenças Hematológicas/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Craniofaciais/genética , Cromossomos Humanos Par 9/genética , Criança , Metilação de DNA/genética , Pré-Escolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricose/genética , Mutação , Insuficiência de Crescimento/genética , Histona-Lisina N-Metiltransferase/genética , Cardiopatias CongênitasRESUMO
Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.
Assuntos
Cromatina , Transtornos do Neurodesenvolvimento , Humanos , Cromatina/genética , Metilação de DNA/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Estudos de Associação Genética , CódonRESUMO
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders. Microdeletions and duplications are associated with neurocognitive deficits, yet few studies compared these groups using the same measures to address confounding measurement differences. We report a prospective international collaboration applying the same computerized neurocognitive assessment, the Penn Computerized Neurocognitive Battery (CNB), administered in a multi-site study on rare genomic disorders: 22q11.2 deletions (n = 492); 22q11.2 duplications (n = 106); 16p11.2 deletion (n = 117); and 16p11.2 duplications (n = 46). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and psychomotor speed. Accuracy and speed for each domain were included as dependent measures in a mixed-model repeated measures analysis. Locus (22q11.2, 16p11.2) and Copy number (deletion/duplication) were grouping factors and Measure (accuracy, speed) and neurocognitive domain were repeated measures factors, with Sex and Site as covariates. We also examined correlation with IQ. We found a significant Locus × Copy number × Domain × Measure interaction (p = 0.0004). 22q11.2 deletions were associated with greater performance accuracy deficits than 22q11.2 duplications, while 16p11.2 duplications were associated with greater specific deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed compared to deletions. Performance profiles differed among the groups with particularly poor memory performance of the 22q11.2 deletion group while the 16p11.2 duplication group had greatest deficits in complex cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. Deletions and duplications of 22q11.2 and 16p11.2 have differential effects on accuracy and speed of neurocognition indicating locus specificity of performance profiles. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome, and can only be established in large-scale international consortia using the same neurocognitive assessment. Future studies could aim to link performance profiles to clinical features and brain function.
RESUMO
BACKGROUND: ARID1A/ARID1B haploinsufficiency leads to Coffin-Siris syndrome, duplications of ARID1A lead to a distinct clinical syndrome, whilst ARID1B duplications have not yet been linked to a phenotype. METHODS: We collected patients with duplications encompassing ARID1A and ARID1B duplications. RESULTS: 16 ARID1A and 13 ARID1B duplication cases were included with duplication sizes ranging from 0.1-1.2 Mb(1-44 genes) for ARID1A and 0.9-10.3 Mb(2-101 genes) for ARID1B. Both groups shared features, with ARID1A patients having more severe intellectual disability, growth delay and congenital anomalies. DNA methylation analysis showed that ARID1A patients had a specific methylation pattern in blood, which differed from controls and from patients with ARID1A or ARID1B loss-of-function variants. ARID1B patients appeared to have a distinct methylation pattern, similar to ARID1A duplication patients, but further research is needed to validate these results. Five cases with duplications including ARID1A or ARID1B initially annotated as duplications of uncertain significance were evaluated using PhenoScore and DNA methylation re-analysis, resulting in the reclassification of two ARID1A and two ARID1B duplications as pathogenic. CONCLUSION: Our findings reveal that ARID1B duplications manifest a clinical phenotype and ARID1A duplications have a distinct episignature that overlaps with that of ARID1B duplications, providing further evidence for a distinct and emerging BAFopathy caused by whole gene duplication rather than haploinsufficiency.
RESUMO
Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.
Assuntos
Conectoma , Transtornos Mentais , Humanos , Pleiotropia Genética , Imageamento por Ressonância Magnética , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Encéfalo/diagnóstico por imagemRESUMO
Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.
Assuntos
Variações do Número de Cópias de DNA , Genoma , Cognição , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Humanos , Testes de InteligênciaRESUMO
The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.
Assuntos
Predisposição Genética para Doença , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Tubulina (Proteína)/genética , Criança , Pré-Escolar , Códon/genética , Epigênese Genética/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/patologia , Mutação com Perda de Função/genética , Masculino , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Transtornos do Neurodesenvolvimento/fisiopatologiaRESUMO
Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.
Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Lateralidade Funcional , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic risk scores (PRSs) as well as idiopathic psychiatric conditions and traits. METHODS: Resting-state functional magnetic resonance imaging data were processed using the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/hyperactivity disorder), and 2 traits (31,424 unaffected control subjects). RESULTS: Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65 z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02-0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r = 0.9, p = 5.93 × 10-6). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r = -0.88, p = 8.78 × 10-6). PRSs had disproportionately low effect sizes on connectivity compared with CNVs conferring similar risk for disease. CONCLUSIONS: Heterogeneity and polygenicity affect our ability to detect brain connectivity alterations underlying psychiatric manifestations.
Assuntos
Heterogeneidade Genética , Psiquiatria , Humanos , Predisposição Genética para Doença , Herança Multifatorial/genética , Encéfalo/diagnóstico por imagem , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica AmplaRESUMO
Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.
RESUMO
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are among the most common rare genetic disorders associated with significant risk for neuropsychiatric disorders across the lifespan. Microdeletions and duplications in these loci are associated with neurocognitive deficits, yet there are few studies comparing these groups using the same measures. We address this gap in a prospective international collaboration applying the same computerized neurocognitive assessment. The Penn Computerized Neurocognitive Battery (CNB) was administered in a multi-site study on rare genomic disorders: 22q11.2 deletion (n = 397); 22q11.2 duplication (n = 77); 16p11.2 deletion (n = 94); and 16p11.2 duplication (n = 26). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and sensori-motor speed. Accuracy and speed for each neurocognitive domain were included as dependent measures in a mixed-model repeated measures analysis, with locus (22q11.2, 16p11.2) and copy number (deletion/duplication) as grouping factors and neurocognitive domain as a repeated measures factor, with age and sex as covariates. We also examined correlation with IQ and site effects. We found that 22q11.2 deletions were associated with greater deficits in overall performance accuracy than 22q11.2 duplications, while 16p11.2 duplications were associated with greater deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed. Performance profiles differed among the groups with particularly poor performance of 16p11.2 duplication on non-verbal reasoning and social cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. No site effects were observed. Deletions and duplications of 22q11.2 and 16p11.2 have varied effects on neurocognition indicating locus specificity, with performance profiles differing among the groups. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome. Future studies could aim to link performance profiles to clinical features and brain function.