Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(5): 055702, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33007768

RESUMO

Mg-doped p-type semiconducting aluminium-gallium-nitride hole source layer (p-AlGaN HSL) materials are quite promising as a source of hole 'p' carriers for the ultraviolet-B (UVB) light-emitting diodes (LEDs) and laser diodes (LDs). However, the p-AlGaN HSL has a central issue of low hole injection due to poor activation of Mg atoms, and the presence of unwanted impurity contamination and the existence of a localized coherent state. Therefore, first the impact of the Mg level on the crystallinity, Al composition and relaxation conditions in the p-AlGaN HSL were studied. An increasing trend in the lattice-relaxation ratios with increasing Mg concentrations in the p-AlGaN HSL were observed. Ultimately, a 40%-60% relaxed and 1.4 µm thick p-AlGaN HSL structure with total threading dislocation densities (total-TDDs) of approximately ∼8-9 × 108 cm-2 was achieved, which almost matches our previous design of a 4 µm thick and 50% relaxed n-AlGaN electron source layer (ESL) with total-TDDs of approximately ∼7-8 × 108 cm-2. Subsequently, structurally a symmetric p-n junction for UVB emitters was accomplished. Finally, the influence of excimer laser annealing (ELA) on the activation of Mg concentration and on suppression of unwanted impurities as well as on the annihilation of the localized energy state in the p-AlGaN HSL were thoroughly investigated. ELA treatment suggested a reduced Ga-N bonding ratio and increased Ga-O, as well as Ga-Ga bonding ratios in the p-AlGaN HSL. After ELA treatment the localized coherent state was suppressed and, ultimately, the photoluminescence emission efficiency as well as conductivity were drastically improved in the p-AlGaN HSL. By using lightly polarized p-AlGaN HSL assisted by ELA treatment, quite low resistivity in p-type AlGaN HSL at room temperature (hole concentration is ∼2.6 × 1016 cm-3, the hole mobility is ∼9.6 cm2 V1 s-1 and the resistivity is ∼24.39 Ω. cm) were reported. ELA treatment has great potential for localized activation of p-AlGaN HSL as well as n- and p-electrodes on n-AlGaN and p-AlGaN contact layers during the flip-chip (FC) process in low operating UVB emitters, including UVB lasers.

2.
Opt Lett ; 45(9): 2563, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356817

RESUMO

This publisher's note contains corrections to Opt. Lett.45, 495 (2020)OPLEDP0146-959210.1364/OL.376894.

4.
Sci Rep ; 12(1): 2591, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173171

RESUMO

Crystal growth of eco-friendly, ultrawide bandgap aluminium gallium nitride (AlGaN) semiconductor-based ultraviolet-B (UVB) light-emitting diodes (LEDs) hold the potential to replace toxic mercury-based ultraviolet lamps. One of the major drawbacks in the utilisation of AlGaN-based UVB LEDs is their low efficiency of about 6.5%. The study investigates the influence of Al-graded p-type multi-quantum-barrier electron-blocking-layer (Al-grad p-MQB EBL) and Al-graded p-AlGaN hole source layer (HSL) on the generation and injection of 3D holes in the active region. Using the new UVB LED design, a significant improvement in the experimental efficiency and light output power of about 8.2% and 36 mW is noticed. This is accomplished by the transparent nature of Al-graded Mg-doped p-AlGaN HSL for 3D holes generation and p-MQB EBL structure for holes transport toward multi-quantum-wells via intra-band tunnelling. Based on both the numerical and experimental studies, the influence of sub-nanometre scale Ni film deposited underneath the 200 nm-thick Al-film p-electrode on the optical reflectance in UVB LED is investigated. A remarkable improvement in the efficiency of up to 9.6% and light output power of 40 mW, even in the absence of standard package, flip-chip, and resin-like lenses, is achieved on bare-wafer under continuous-wave operation at room temperature. The enhanced performance is attributed to the use of Al-graded p-MQB EBL coupled with softly polarised p-AlGaN HSL and the highly reflective 0.4 nm-thick Ni and 200 nm-thick Al p-electrode in the UVB LED. This research study provides a new avenue to improve the performance of high-power p-AlGaN-based UVB LEDs and other optoelectronic devices in III-V semiconductors.

5.
Phys Rev Lett ; 106(15): 157002, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568603

RESUMO

Transport properties of a superconductor-semiconductor-superconductor (Su-Sm-Su) junction with superlattice structure are investigated. Differential resistance as a function of voltage shows oscillatory behavior under the irradiation of radio-frequency (rf) waves with the specific frequency of 1.77 GHz regardless of the superconducting materials and the junction geometries. Experimental data are quantitatively explained in terms of the coupling of superconducting quasiparticles with long-wavelength acoustic phonons indirectly excited by the rf waves. We propose that the strong coupling causes the formation of novel composite particles, Andreev polarons.

6.
Sci Rep ; 6: 35681, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819331

RESUMO

An AlN template layer is required for growth of AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs). However, the crystal quality of AlN templates grown on both flat and patterned Si substrates has so far been insufficient for replacing templates grown on sapphire substrates. In this work, we grew a high-quality AlN template on 2 in. micro-circle-patterned Si substrate (mPSiS) with two different sizes and shapes through controlling the bias power of inductively coupled plasma (ICP) etching. The experimental results showed that the best AlN template was obtained on a large pattern size with a bow-angle shape and the template had X-ray rocking curves with full widths at half-maximum of 620 and 1141 arcsec for the (002) and (102) reflection planes. The threading dislocation density near surface of AlN template through transmission electron microscopy (TEM) estimation was in the order of 107 cm-2, which is the lowest dislocation density reported for a Si substrate to our knowledge. A strong single electroluminescence (EL) peak was also obtained for an AlGaN-based deep UV-LED grown on this template, means that it can be used for further developing high-efficiency deep UV-LEDs.

7.
Sci Rep ; 5: 14734, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439169

RESUMO

High-density micro-circle patterned Si substrates were successfully fabricated for the direct overgrowth of thick AlN templates by using NH3 pulsed-flow multilayer AlN growth and epitaxial lateral overgrowth techniques. The experimental results show that an 8-µm-thick AlN template was grown at a very high growth rate on the substrates. The AlN template had full widths at half maximum of 0.23° and 0.37° for the (002) and (102) reflection planes in X-ray diffraction rocking curves. Atomic force microscopy and transmission electron microscopy confirmed that the roughness of the surface was low (3.5 nm) and the dislocation density was very low (1.5 × 10(8) cm(-2) (screw), 3.7 × 10(8) (edge) cm(-2)).

8.
Nanoscale ; 7(40): 16773-80, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26400667

RESUMO

The interaction between nitrogen (N) impurity states in III-V compounds plays a key role in controlling optoelectronic properties of the host materials. Here, we use scanning tunneling microscopy to characterize the spatial distribution and electronic properties of N impurity states in dilute GaNAs. We demonstrated that the N impurity states can be directly visualized by taking empty state current images using the multipass scanning method. The N impurity states broadened over several nanometers and exhibited a highly anisotropic distribution with a bowtie-like shape on the GaAs(110) surface, which can be explained by anisotropic propagation of strain along the zigzag chains of Ga and As atoms in the {110} plane. Our experimental findings provide strong insights into a possible role of N impurity states in modifying properties of the host materials.

9.
Nanoscale Res Lett ; 7(1): 654, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23186261

RESUMO

Blueshifts of luminescence observed in type-II heterostructures are quantitatively examined in terms of a self-consistent approach including excitonic effects. This analysis shows that the main contribution to the blueshift originates from the well region rather than the variation of triangular potentials formed in the barrier region. The power law for the blueshift, ΔEPL ∝ Plaserm, from m = 1/2 for lower excitation Plaser to m = 1/4 for higher excitation, is obtained from the calculated results combined with a rate equation analysis, which also covers the previously believed m = 1/3 power law within a limited excitation range. The present power law is consistent with the blueshift observed in a GaAsSb/GaAs quantum well.

10.
Nanoscale Res Lett ; 6(1): 76, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21711596

RESUMO

We study the effects of low-temperature capping (200-450°C) on the optical properties of GaAs/AlGaAs quantum wells. Photoluminescence measurements clearly show the formation of abundant nonradiative recombination centers in an AlGaAs capping layer grown at 200°C, while there is a slight degradation of the optical quality in AlGaAs capping layers grown at temperatures above 350°C compared to that of a high-temperature capping layer. In addition, the optical quality can be restored by post-growth annealing without any structural change, except for the 200°C-capped sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA