Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 110(1): 211-218, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37724921

RESUMO

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 µm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.


Assuntos
Microplásticos , Plásticos , Gravidez , Feminino , Humanos , Animais , Camundongos , Poliestirenos/toxicidade , Placenta/irrigação sanguínea , Desenvolvimento Fetal
2.
Environ Res ; 241: 117547, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949288

RESUMO

Industrial wastewater effluents are a major source of chemicals in aquatic environments, and many of these chemicals may negatively impact aquatic life. In this study, the crustacean Daphnia magna, a common model organism in ecotoxicity studies, was exposed for 48 h to nine different industrial effluent samples from manufacturing facilities associated with the production of plastics, polymers, and coating products at a range of dilutions: 10, 25, 50, 100% (undiluted). A targeted metabolomic-based approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify polar metabolites from individual daphnids that survived the 48 h exposure. Multivariate analyses and metabolite changes revealed metabolic perturbations across all effluent samples studied, with non-monotonic responses and both up and downregulation relative to the unexposed control. Pathway analyses indicated the disruption of similar and distinct pathways, mostly connected to protein synthesis, amino acid metabolism, and antioxidant processes. Overall, we observed disruptions in Daphnia biochemistry that were similar across the effluent samples, but with unique features for each effluent sample. Additionally, non-monotonic heightened responses suggested additive and/or synergistic interactions between the chemicals within the industrial effluents. These findings demonstrate that targeted metabolomic approaches are a powerful tool for the biomonitoring of aquatic ecosystems in the context of complex mixtures, such as industrial wastewater effluents.


Assuntos
Daphnia magna , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Antioxidantes/metabolismo , Polímeros , Aminoácidos/metabolismo , Cromatografia Líquida , Ecossistema , Espectrometria de Massas em Tandem , Metabolômica , Daphnia , Poluentes Químicos da Água/análise
3.
Metabolomics ; 19(12): 96, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989919

RESUMO

INTRODUCTION: Plastics used in everyday materials accumulate as waste in the environment and degrade over time. The impacts of the resulting particulate micro- and nanoplastics on human health remain largely unknown. In pregnant mice, we recently demonstrated that exposure to nanoplastics throughout gestation and during lactation resulted in changes in brain structure detected on MRI. One possible explanation for this abnormal postnatal brain development is altered fetal brain metabolism. OBJECTIVES: To determine the effect of maternal exposure to nanoplastics on fetal brain metabolism. METHODS: Healthy pregnant CD-1 mice were exposed to 50 nm polystyrene nanoplastics at a concentration of 106 ng/L through drinking water during gestation. Fetal brain samples were collected at embryonic day 17.5 (n = 18-21 per group per sex) and snap-frozen in liquid nitrogen. Magic angle spinning nuclear magnetic resonance was used to determine metabolite profiles and their relative concentrations in the fetal brain. RESULTS: The relative concentrations of gamma-aminobutyric acid (GABA), creatine and glucose were found to decrease by 40%, 21% and 30% respectively following maternal nanoplastic exposure when compared to the controls (p < 0.05). The change in relative concentration of asparagine with nanoplastic exposure was dependent on fetal sex (p < 0.005). CONCLUSION: Maternal exposure to polystyrene nanoplastics caused abnormal fetal brain metabolism in mice. The present study demonstrates the potential impacts of nanoplastic exposure during fetal development and motivates further studies to evaluate the risk to human pregnancies.


Assuntos
Microplásticos , Poliestirenos , Gravidez , Humanos , Feminino , Animais , Camundongos , Exposição Materna/efeitos adversos , Metabolômica , Encéfalo
4.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375418

RESUMO

Environmental metabolomics provides insight into how anthropogenic activities have an impact on the health of an organism at the molecular level. Within this field, in vivo NMR stands out as a powerful tool for monitoring real-time changes in an organism's metabolome. Typically, these studies use 2D 13C-1H experiments on 13C-enriched organisms. Daphnia are the most studied species, given their widespread use in toxicity testing. However, with COVID-19 and other geopolitical factors, the cost of isotope enrichment increased ~6-7 fold over the last two years, making 13C-enriched cultures difficult to maintain. Thus, it is essential to revisit proton-only in vivo NMR and ask, "Can any metabolic information be obtained from Daphnia using proton-only experiments?". Two samples are considered here: living and whole reswollen organisms. A range of filters are tested, including relaxation, lipid suppression, multiple-quantum, J-coupling suppression, 2D 1H-1H experiments, selective experiments, and those exploiting intermolecular single-quantum coherence. While most filters improve the ex vivo spectra, only the most complex filters succeed in vivo. If non-enriched organisms must be used, then, DREAMTIME is recommended for targeted monitoring, while IP-iSQC was the only experiment that allowed non-targeted metabolite identification in vivo. This paper is critically important as it documents not just the experiments that succeed in vivo but also those that fail and demonstrates first-hand the difficulties associated with proton-only in vivo NMR.


Assuntos
COVID-19 , Daphnia , Animais , Daphnia/metabolismo , Prótons , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Metabolômica
5.
Anal Chem ; 94(32): 11113-11117, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35913896

RESUMO

Gas chromatography multiplexed with cyclic ion mobility mass spectrometry is a comprehensive two-dimensional separation technique that can resolve compounds that would otherwise coelute in a single-dimension separation. The cyclic geometry of the ion mobility cell enables ions to travel multiple passes, increasing their drift times to the detector and relative separation. However, the quality of the separation may be obfuscated when "wrap-around" occurs, during which speedier ions catch up with slower ion populations when allowed to travel through more than one pass. Consequently, cyclic ion mobility is incorrectly perceived as a targeted approach that requires preselection of ions prior to separation. The present study demonstrates that "wrap-around" can be mitigated by comparing drift times measured during single- and multipass experiments and extrapolating the number of passes experienced by each ion. This straightforward calculation results in the "unwrapping" of cyclic ion mobility data so that the experiments can be interpreted in a nontargeted way while reaping the benefit of peak capacities that rival those achieved using other comprehensive two-dimensional separations.


Assuntos
Espectrometria de Mobilidade Iônica , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Íons/química , Espectrometria de Massas/métodos
6.
Anal Chem ; 94(31): 11096-11103, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35912800

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been widely used since the 1940s in industry and everyday household products. They also persist in the environment and bioaccumulate in humans and wildlife. Despite these concerns, the identities of most PFASs in environmental and biological samples are unknown. Herein, we describe a novel cyclic ion mobility mass spectrometer (cIMS), hyphenated with gas chromatography (GC) atmospheric pressure chemical ionization, that can reveal the presence of unknown PFASs on the basis of the ratio of their mass and collision cross section (CCS). Prediction of the CCS of ca. 20,000 chemicals used in industry and commerce indicates that most compounds characterized by CCS values that are less than the sum of 100 Å2 and one-fifth of their mass are either PFASs or polybrominated flame retardants. When this filter is applied to GC-cIMS data collected from a set of 20 indoor dust samples, PFAS compounds are revealed without prior knowledge of their occurrence. Validation of this approach was performed using SRM 2585, a standard reference material of household dust, by comparing the PFASs detected with those (tentatively) identified in previous studies. Chlorofluoro phthalimides tentatively identified previously were confirmed with a synthesized standard. The method also reveals the presence of chlorofluoro n-alkanes as an emerging class of "forever chemicals" that contaminate the indoor environment.


Assuntos
Fluorocarbonos , Cromatografia Líquida , Poeira/análise , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas
7.
Biol Reprod ; 106(3): 397-407, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34875017

RESUMO

Per- and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are persistent in the environment and bioaccumulate in wildlife and humans, potentially causing adverse health effects at all stages of life. Studies from human pregnancy have shown that exposure to these contaminants are associated with placental dysfunction and fetal growth restriction; however, studies in humans are confounded by genetic and environmental factors. Here, we synthesize the available results from mouse models of pregnancy to show the causal effects of prenatal exposure to PFOA and PFOS on placental and fetal development and on neurocognitive function and metabolic disorders in offspring. We also propose gaps in the present knowledge and provide suggestions for future research studies.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Animais , Caprilatos/toxicidade , Modelos Animais de Doenças , Poluentes Ambientais/toxicidade , Feminino , Desenvolvimento Fetal , Fluorocarbonos/toxicidade , Camundongos , Placenta , Gravidez
8.
Metabolomics ; 19(1): 1, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538272

RESUMO

INTRODUCTION: The rapid growth in the worldwide use of plastics has resulted in a vast accumulation of microplastics in the air, soil and water. The impact of these microplastics on pregnancy and fetal development remains largely unknown. In pregnant mice, we recently demonstrated that exposure to micro- and nanoplastics throughout gestation resulted in significant fetal growth restriction. One possible explanation for reduced fetal growth is abnormal placental metabolism. OBJECTIVES: To evaluate the effect of maternal exposure to microplastics on placental metabolism. METHODS: In the present study, CD-1 pregnant mice were exposed to 5 µm polystyrene microplastics in filtered drinking water at one of four concentrations (0 ng/L (controls), 102 ng/L, 104 ng/L, 106 ng/L) throughout gestation (n = 7-11/group). At embryonic day 17.5, placental tissue samples were collected (n = 28-44/group). Metabolite profiles were determined using 1 H high-resolution magic angle spinning magnetic resonance spectroscopy. RESULTS: The relative concentration of lysine (p = 0.003) and glucose (p < 0.0001) in the placenta were found to decrease with increasing microplastic concentrations, with a significant reduction at the highest exposure concentration. Multivariate analysis identified shifts in the metabolic profile with MP exposure and pathway analysis identified perturbations in the biotin metabolism, lysine degradation, and glycolysis/gluconeogenesis pathways. CONCLUSION: Maternal exposure to microplastics resulted in significant alterations in placental metabolism. This study highlights the potential impact of microplastic exposure on pregnancy outcomes and that efforts should be made to minimize exposure to plastics, particularly during pregnancy.


Assuntos
Microplásticos , Placenta , Humanos , Gravidez , Feminino , Animais , Camundongos , Placenta/metabolismo , Microplásticos/metabolismo , Poliestirenos/metabolismo , Plásticos/metabolismo , Exposição Materna/efeitos adversos , Lisina/metabolismo , Metabolômica
9.
Environ Res ; 212(Pt D): 113582, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661729

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of pollutants of concern due to their ubiquitous presence, persistence, and toxicity in aquatic environments. Legacy PFAS pollutants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been more widely studied in aquatic environments. However, replacement PFAS, such as ammonium perfluoro (2-methyl-3-oxahexanoate; GenX) are increasingly being detected with little known information surrounding their toxicity. Here, Daphnia magna, a model organism for freshwater ecotoxicology was used to compare the acute sub-lethal toxicity of PFOS, PFOA, GenX, and PFAS mixtures. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the targeted polar metabolic profile extracted from single Daphnia was quantified to investigate perturbations in the exposure groups versus the unexposed organisms. Multivariate statistical analyses demonstrated significant non-monotonic separation in PFOA, GenX, and PFAS mixture exposures. Sub-lethal exposure to concentrations of PFOS did not lead to significant separation in multivariate analyses. Univariate statistics and pathway analyses were used to elucidate the mode of action of PFAS exposure. Exposure to all individual PFAS led to significant perturbations in many amino acids including cysteine, histidine, tryptophan, glycine, and serine. These perturbations are consistent with biochemical pathway disruptions in the pantothenate and Coenzyme A (CoA) biosynthesis, thiamine metabolism, histidine metabolism, and aminoacyl-tRNA biosynthesis pathways. Overall, the collected metabolomic data is consistent with disruptions in energy metabolism and protein synthesis as the primary mode of action of sub-lethal PFAS exposure. Secondary modes of action among individual pollutant exposures demonstrated that the structural properties (carboxylic acid vs. sulfonic acid group) may play a role in the metabolic perturbations observed. Sub-lethal exposure to PFAS mixtures highlighted a mixed response when compared to the individual pollutants (PFOS, PFOA, and GenX). Overall, this study emphasizes the niche capability of environmental metabolomics to differentiate secondary modes of action from metabolic perturbations in both single pollutant and pollutant mixtures within the same chemical class.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Ácidos Alcanossulfônicos/análise , Animais , Cromatografia Líquida , Daphnia , Poluentes Ambientais/análise , Fluorocarbonos/análise , Histidina , Espectrometria de Massas em Tandem
10.
Anal Chem ; 93(3): 1498-1506, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355455

RESUMO

The identity of an unknown environmental pollutant is reflected by the mass and dissociation chemistry of its (quasi)molecular ion. Gas chromatography-atmospheric pressure chemical ionization-mass spectrometry (GC-APCI-MS) increases the yield of molecular ions (compared to conventional electron ionization) by collisional cooling. Scanning quadrupole data-independent acquisition (SQDIA) permits unbiased, unattended selection of (quasi)molecular ions and acquisition of structure-diagnostic collision-induced dissociation mass spectra, while minimizing interferences, by sequentially cycling a quadrupole isolation window through the m/z range. This study reports on the development of a suspect screening method based on industrial compounds with bioaccumulation potential. A comparison of false and correct identifications in a mixed standard containing 30 analytes suggests that SQDIA results in a markedly lower false-positive rate than standard DIA: 5 for SQDIA and 82 for DIA. Electronic waste dust was analyzed using GC and quadrupole time-of-flight MS with APCI and SQDIA acquisition. A total of 52 brominated, chlorinated, and organophosphorus compounds were identified by suspect screening; 15 unique elemental compositions were identified using nontargeted screening; 17 compounds were confirmed using standards and others identified to confidence levels 2, 3, or 4. SQDIA reduced false-positive identifications, compared to experiments without quadrupole isolation. False positives also varied by class: 20% for Br, 37% for Cl, 75% for P, and >99% for all other classes. The structure proposal of a previously reported halogenated compound was revisited. The results underline the utility of GC-SQDIA experiments that provide information on both the (quasi)molecular ions and its dissociation products for a more confident structural assignment.


Assuntos
Pressão Atmosférica , Poluentes Ambientais/análise , Compostos Orgânicos/análise , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular
11.
Environ Sci Technol ; 55(23): 15912-15920, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34802231

RESUMO

Short-chain polychlorinated n-alkanes are ubiquitous industrial chemicals widely recognized as persistent organic pollutants. They represent only a small fraction of the 184,600 elemental compositions (C10-25) and the myriad isomers of all possible (mixed) halogenated n-alkanes (PXAs). This study prioritizes the PXAs on the basis of their potential to persist, bioaccumulate, and undergo long-range transport guided by quantitative structure-property relationships (QSPRs), density functional theory (DFT), chemical fate models, and partitioning space. The QSPR results narrow the list to 966 elemental compositions, of which 352 (23 Br, 83 Cl/F, 119 Br/Cl, and 127 Br/F) are likely constituents of substances used as lubricants, plasticizers, and flame retardants. Complementary DFT calculations suggest that an additional 1367 elemental compositions characterized by a greater number of carbon and fluorine atoms but fewer chlorine and bromine atoms may also pose a risk. The results of this study underline the urgent need to identify and monitor these suspected pollutants, most appropriately using mass spectrometry. We estimate that the resolving power required to distinguish ∼74% of the prioritized elemental compositions from the most likely interferents, i.e., chlorinated alkanes, is approximately 60,000 (full width at half-maximum). This indicates that accurate identification of the PXAs is achievable using most high-resolution mass spectrometers.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Hidrocarbonetos Clorados , Alcanos/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Hidrocarbonetos Clorados/análise , Poluentes Orgânicos Persistentes
12.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834002

RESUMO

Gas chromatography-high-resolution mass spectrometry (GC-HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC-HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC-API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion-molecule reactions that are otherwise difficult to perform using conventional GC-MS instrumentation. This literature review addresses the merits of GC-API for nontargeted screening while summarizing recent applications using various GC-API techniques. One perceived drawback of GC-API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC-MS ion source used to identify unknowns.

13.
Anal Chem ; 92(19): 13558-13564, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32901481

RESUMO

Urinary 1-hydroxypyrene (HP) is a widely used biomarker of polycyclic aromatic hydrocarbon exposure relevant for biomonitoring the deleterious health impacts from tobacco smoke and ambient air pollution, as well as the hazards of certain occupations. Conventional methods for urinary HP analysis based on liquid chromatography with native fluorescence detection or tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC-MS) are limited by low sample throughput and complicated sample workup protocols that are prone to bias. Herein, we introduce a high throughput method to directly analyze the intact glucuronide conjugate of HP (HP-G) in human urine after a simple acidified ether extraction procedure when using multisegment injection-capillary electrophoresis-tandem mass spectrometry (MSI-CE-MS/MS). Multiplexed analyses of 13 independent urine extracts are achieved in a single run (<3 min/sample) with stringent quality control while avoiding enzyme deconjugation and precolumn chemical derivatization. Method validation demonstrates good technical precision (CV = 7.7%, n = 45) and accuracy with a mean recovery of (93 ± 3%) for urinary HP-G at three concentration levels with adequate detection limits (7 ng/L, S/N = 3). An interlaboratory method comparison of urine samples collected from firefighters deployed in the 2016 Fort McMurray wildfire also confirms good mutual agreement with an acceptable negative bias (mean bias = 15%, n = 55) when measuring urinary HP-G by MSI-CE-MS/MS as compared to total hydrolyzed urinary HP by GC-MS due to the low residual levels of free HP and its sulfate conjugate. This multiplexed separation platform is optimal for large-scale biomonitoring studies of air pollution relevant to global health as well as occupational smoke exposures in firefighters susceptible to dermal PAH absorption when using personal protective equipment.


Assuntos
Monitoramento Biológico , Glucuronatos/urina , Pirenos/urina , Poluição por Fumaça de Tabaco/análise , Fumar Tabaco/efeitos adversos , Eletroforese Capilar , Humanos , Estrutura Molecular , Espectrometria de Massas em Tandem
14.
Anal Chem ; 92(16): 11186-11194, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32806901

RESUMO

Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and nontarget screening with liquid chromatography (LC)-high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date, no automated open source PFAS data analysis software exists to mine these extensive data sets. We introduce FluoroMatch, which automates file conversion, chromatographic peak picking, blank feature filtering, PFAS annotation based on precursor and fragment masses, and annotation ranking. The software library currently contains ∼7 000 PFAS fragmentation patterns based on rules derived from standards and literature, and the software automates a process for users to add additional compounds. The use of intelligent data-acquisition methods (iterative exclusion) nearly doubled the number of annotations. The software application is demonstrated by characterizing PFAS in landfill leachate as well as in leachate foam generated to concentrate the compounds for remediation purposes. FluoroMatch had wide coverage, returning 27 PFAS annotations for landfill leachate samples, explaining 71% of the all-ion fragmentation (CF2)n related fragments. By improving the throughput and coverage of PFAS annotation, FluoroMatch will accelerate the discovery of PFAS posing significant human risk.


Assuntos
Hidrocarbonetos Fluorados/análise , Algoritmos , Cromatografia Líquida/estatística & dados numéricos , Hidrocarbonetos Fluorados/química , Bibliotecas de Moléculas Pequenas/química , Software , Espectrometria de Massas em Tandem/estatística & dados numéricos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
15.
Environ Sci Technol ; 53(6): 3157-3165, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30753781

RESUMO

Coal tar-based sealcoat (CTSC) products are an urban source of polycyclic aromatic compounds (PACs) to the environment. However, efforts to assess the environmental fate and impacts of CTSC-derived PACs are hindered by the ubiquity of (routinely monitored) PACs released from other environmental sources. To advance source identification of CTSC-derived PACs, we use comprehensive two-dimensional gas chromatography-high resolution mass spectrometry (GC × GC/HRMS) to characterize the major and minor components of CTSC products in comparison to those in other sources of PACs, viz., asphalt-based sealcoat products, diesel particulate, diesel fuel, used motor oil and roofing shingles. GC × GC/HRMS analyses of CTSC products led to the confident assignment of compounds with 88 unique elemental compositions, which includes a set of 240 individual PACs. Visualization of the resulting profiles using Kendrick mass defect plots and hierarchical cluster analysis highlighted compositional differences between the sources. Profiles of alkylated PAHs, and heteroatomic (N, O, S) PACs enabled greater specificity in source differentiation. Isomers of specific polycyclic aromatic nitrogen heterocycles (PANHs) were diagnostic for coal tar-derived PAC sources. The compounds identified and methods used for this identification are anticipated to aid in future efforts on risk assessment and source apportionment of PACs in environmental matrices.


Assuntos
Alcatrão , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Carvão Mineral , Monitoramento Ambiental
16.
Environ Sci Technol ; 53(18): 10835-10844, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31441649

RESUMO

Bromo-chloro alkenes (Br-Cl PXAs) have been used for over 30 years as flame retardants and are listed on several national chemical inventories. Very little publicly available information is available on Br-Cl PXAs, and thus preliminary ecological risk screening is challenging due to the lack of basic information such as molecular structure and associated physicochemical properties. Due to their likely similarity with chlorinated paraffins (CPs), Br-Cl PXAs may pose a similar environmental hazard. Several structural databases list such substances as "alkenes", although the industrial synthesis involves halogenation of linear alpha-olefins and would be expected to produce linear alkanes. In this study, a combination of high-resolution separation and mass spectrometric techniques were used to characterize a Br-Cl PXA industrial technical product, C12-30 bromo-chloro alpha-alkenes (CAS RN 68527-01-5). The results show this product is dominated by C18 carbon chain lengths, substituted with 3-7 chlorine atoms and 1-3 bromine atoms on an alkane chain. Long-chain C18 chlorinated paraffins are also present, although they represent a relatively minor component. Experimental log KOW (6.9 to 8.6) and estimated log KOA (10.5 to 13.5) and log KAW (-5.1 to -0.6) partition coefficients suggest that this chemical will behave similarly to medium- and long-chain CPs as well as other persistent organic pollutants, such as highly chlorinated pesticides and polychlorinated biphenyls. The results of this study provide an initial step toward understanding the environmental behavior and persistence of Br-Cl PXAs, highlighting the need for further assessment and re-evaluation of the current structure(s) assigned to these compounds.


Assuntos
Retardadores de Chama , Hidrocarbonetos Clorados , Bifenilos Policlorados , Alcenos , Monitoramento Ambiental , Parafina
17.
Anal Bioanal Chem ; 411(7): 1397-1407, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30683964

RESUMO

Urinary 1-hydroxypyrene (OH-Pyr) is widely used for biomonitoring human exposures to polycyclic aromatic hydrocarbons (PAHs) from air pollution and tobacco smoke. However, there have been few rigorous validation studies reported to ensure reliable OH-Pyr determination for occupational health and risk assessment. Herein, we report an inter-laboratory method comparison for urinary OH-Pyr when using gas chromatography-high-resolution mass spectrometry (GC-HRMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) on urine specimens collected from firefighters (n = 42) deployed at the 2016 Fort McMurray wildfire. Overall, there was good mutual agreement in urinary OH-Pyr quantification following enzyme deconjugation with an average bias of 39% with no significant deviation from linearity (slope = 1.36; p > 0.05), whereas technical precision (< 12%) and average recovery (> 85%) were acceptable when using a stable-isotope internal standard. Faster analysis times (4 min) were achieved by LC-MS/MS without chemical derivatization, whereas lower detection limits (0.64 ng/L, S/N = 3) was realized with solid-phase extraction prior to GC-HRMS. A median creatinine normalized OH-Pyr concentration of 128 ng/g was measured for firefighters that were below the recommended biological exposure index due to delays between early stages of emergency firefighting and urine sample collection. Similar outcomes were also measured for 3-hydroxyphenanthrene and 9-hydroxyfluorene that were positively correlated with urinary OH-Pyr (p < 0.05), implying similar uptake, distribution, and liver biotransformation processes. Optimal specimen collection strategies post-deployment together with standardized protocols for OH-PAH analysis are critical to accurately evaluate smoke exposure in firefighters, including experimental conditions to ensure quantitative enzyme hydrolysis of urine samples. Graphical abstract.


Assuntos
Poluentes Ocupacionais do Ar/urina , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pirenos/urina , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Bombeiros , Humanos , Exposição por Inalação/efeitos adversos , Exposição Ocupacional/efeitos adversos , Fumaça/efeitos adversos , Incêndios Florestais
18.
Anal Bioanal Chem ; 411(10): 1957-1977, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30830245

RESUMO

Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants.

19.
Environ Sci Technol ; 51(3): 1518-1526, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28004576

RESUMO

The study of not only main flame retardants but also of related degradation products or impurities has gained attention in the last years and is relevant to assess the safety of our consumer products and the emission of potential contaminants into the environment. In this study, we show that plastics casings of electric/electronic devices containing TBBPA contain also a complex mixture of related brominated chemicals. These compounds were most probably coming from impurities, byproducts, or degradation products of TBBPA and TBBPA derivatives. A total of 14 brominated compounds were identified based on accurate mass measurements (formulas and tentative structures proposed). The formulas (or number of bromine elements) for 19 other brominated compounds of minor intensity are also provided. A new script for the recognition of halogenated compounds based on combining a simplified isotope pattern and mass defect cluster analysis was developed in R for the screening. The identified compounds could be relevant from an environmental and industrial point of view.


Assuntos
Retardadores de Chama , Plásticos , Bromo/química , Eletrônica , Hidrocarbonetos Bromados , Isótopos , Bifenil Polibromatos
20.
Anal Bioanal Chem ; 409(21): 4959-4969, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28634756

RESUMO

Microcystins are cyclic heptapeptide hepatotoxins produced by cyanobacteria in freshwater. Sample preparation for the analysis of these cyanotoxins in water from algal blooms can take up to several days due to the matrix complexity and the low detection limits required to comply with current legislation. Moreover, there is a large number of unknown microcystins that could potentially exist in the environment resulting from different amino acid substitutions into the microcystin skeletal structure. To tackle these problems, the present study involved the development of a high throughput method based on on-line solid phase extraction coupled to liquid chromatography that could provide quantitative results for 12 microcystin variants (LR, YR, RR, HtyR, HilR, WR, LW, LA, LF, LY, Dha7-LR, and Dha7-RR) and anatoxin-A in less than 3 h with detection limits between 0.004 and 0.01 µg L-1 and expanded uncertainty between 4 and 14%. Data-dependent acquisition was employed for the non-targeted analysis of these cyanotoxins. Filtering the data based on structure diagnostic fragments, two unknown microcystin variants not previously reported in the literature were detected. The structures Leu1-microcystin-Met(O)R and Leu1-microcystin-LY were fully characterized by accurate mass measurement, collision-induced dissociation, and fragmentation prediction software.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Microcistinas/análise , Extração em Fase Sólida/métodos , Tropanos/análise , Toxinas de Cianobactérias , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA