Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 21(2): 439-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22037694

RESUMO

Caenorhabditis elegans strains carrying stress-reporter green fluorescent protein transgenes were used to explore patterns of response to metals. Multiple stress pathways were induced at high doses by most metals tested, including members of the heat shock, oxidative stress, metallothionein (mtl) and xenobiotic response gene families. A mathematical model (to be published separately) of the gene regulatory circuit controlling mtl production predicted that chemically similar divalent metals (classic inducers) should show additive effects on mtl gene induction, whereas chemically dissimilar metals should show interference. These predictions were verified experimentally; thus cadmium and mercury showed additive effects, whereas ferric iron (a weak inducer) significantly reduced the effect of mercury. We applied a similar battery of tests to diluted samples of soil pore water extracted centrifugally after mixing 20% w/w ultrapure water with air-dried soil from an abandoned lead/zinc mine in the Murcia region of Spain. In addition, metal contents of both soil and soil pore water were determined by ICP-MS, and simplified mixtures of soluble metal salts were tested at equivalent final concentrations. The effects of extracted soil pore water (after tenfold dilution) were closely mimicked by mixtures of its principal component ions, and even by the single most prevalent contaminant (zinc) alone, though other metals modulated its effects both positively and negatively. In general, mixtures containing similar (divalent) metal ions exhibited mainly additive effects, whereas admixture of dissimilar (e.g. trivalent) ions often resulted in interference, reducing overall levels of stress-gene induction. These findings were also consistent with model predictions.


Assuntos
Técnicas Biossensoriais/métodos , Caenorhabditis elegans/efeitos dos fármacos , Monitoramento Ambiental/métodos , Metais/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interações Medicamentosas , Água Subterrânea/química , Metalotioneína/genética , Metalotioneína/metabolismo , Metais/análise , Modelos Biológicos , Organismos Geneticamente Modificados , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/análise , Regulação para Cima/efeitos dos fármacos
2.
Hum Mol Genet ; 18(21): 4089-101, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19648295

RESUMO

Duchenne Muscular Dystrophy is an inherited muscle degeneration disease for which there is still no efficient treatment. However, compounds active on the disease may already exist among approved drugs but are difficult to identify in the absence of cellular models. We used the Caenorhabditis elegans animal model to screen a collection of 1000 already approved compounds. Two of the most active hits obtained were methazolamide and dichlorphenamide, carbonic anhydrase inhibitors widely used in human therapy. In C. elegans, these drugs were shown to interact with CAH-4, a putative carbonic anhydrase. The therapeutic efficacy of these compounds was further validated in long-term experiments on mdx mice, the mouse model of Duchenne Muscular Dystrophy. Mice were treated for 120 days with food containing methazolamide or dichlorphenamide at two doses each. Musculus tibialis anterior and diaphragm muscles were histologically analyzed and isometric muscle force was measured in M. extensor digitorum longus. Both substances increased the tetanic muscle force in the treated M. extensor digitorum longus muscle group, dichlorphenamide increased the force significantly by 30%, but both drugs failed to increase resistance of muscle fibres to eccentric contractions. Histological analysis revealed a reduction of centrally nucleated fibers in M. tibialis anterior and diaphragm in the treated groups. These studies further demonstrated that a C. elegans-based screen coupled with a mouse model validation strategy can lead to the identification of potential pharmacological agents for rare diseases.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Modelos Animais de Doenças , Distrofina/deficiência , Distrofia Muscular Animal/prevenção & controle , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Diclorofenamida/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Distrofina/genética , Humanos , Metazolamida/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Atividade Motora , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Interferência de RNA , Fatores de Tempo
3.
J Am Chem Soc ; 131(44): 15966-7, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19810719

RESUMO

Using light to modulate biochemical agents in living organisms has a significant impact on photodynamic therapy and drug release. We demonstrate that a photoresponsive system can reversibly induce paralysis in nematodes as a model for living organisms when two different wavelengths of light are used to toggle the molecular switch between its two structural forms. This example illustrates how photoswitches offer great potential for advancing biomedical technologies.


Assuntos
Etilenos/efeitos da radiação , Luz , Paralisia/tratamento farmacológico , Animais , Caenorhabditis elegans/efeitos dos fármacos , Ciclização/efeitos da radiação , Etilenos/farmacologia , Modelos Animais , Fotoquimioterapia/métodos
5.
Nanoscale ; 7(26): 11263-6, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26067629

RESUMO

The water-insolubility of a potentially versatile photoresponsive 'turn-on' fluorescence probe was overcome by incorporating it into a nano-assembly containing an upconverting nanoparticle wrapped in an amphiphilic polymer. The appeal of the nano-system is not only in the ability to turn "on" and "off" the fluorescence from the organic chromophore using UV and visible light, it is in the fact that the nanoparticle acts as a static probe because it emits red and green light when excited by near infrared light, which is not effected by UV and visible light. This dual-functioning emission behaviour was demonstrated in live organisms.


Assuntos
Caenorhabditis elegans/metabolismo , Corantes Fluorescentes , Nanopartículas/química , Imagem Óptica , Raios Ultravioleta , Animais , Caenorhabditis elegans/citologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA