Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(4): 714-23, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957680

RESUMO

When transcription regulatory networks are compared among distantly related eukaryotes, a number of striking similarities are observed: a larger-than-expected number of genes, extensive overlapping connections, and an apparently high degree of functional redundancy. It is often assumed that the complexity of these networks represents optimized solutions, precisely sculpted by natural selection; their common features are often asserted to be adaptive. Here, we discuss support for an alternative hypothesis: the common structural features of transcription networks arise from evolutionary trajectories of "least resistance"--that is, the relative ease with which certain types of network structures are formed during their evolution.


Assuntos
Evolução Biológica , Redes Reguladoras de Genes , Animais , Biofilmes , Células-Tronco Embrionárias , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Regulação da Expressão Gênica , Plantas/classificação , Plantas/genética , Plantas/metabolismo
2.
Cell ; 151(1): 80-95, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021217

RESUMO

We examine how different transcriptional network structures can evolve from an ancestral network. By characterizing how the ancestral mode of gene regulation for genes specific to a-type cells in yeast species evolved from an activating paradigm to a repressing one, we show that regulatory protein modularity, conversion of one cis-regulatory sequence to another, distribution of binding energy among protein-protein and protein-DNA interactions, and exploitation of ancestral network features all contribute to the evolution of a novel regulatory mode. The formation of this derived mode of regulation did not disrupt the ancestral mode and thereby created a hybrid regulatory state where both means of transcription regulation (ancestral and derived) contribute to the conserved expression pattern of the network. Finally, we show how this hybrid regulatory state has resolved in different ways in different lineages to generate the diversity of regulatory network structures observed in modern species.


Assuntos
Evolução Molecular , Proteínas Fúngicas/genética , Redes Reguladoras de Genes , Proteínas de Membrana/genética , Saccharomycetales/genética , Fatores de Transcrição/genética , Filogenia , Saccharomycetales/metabolismo
3.
Cell ; 148(1-2): 126-38, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265407

RESUMO

A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Animais , Candida albicans/fisiologia , Candida albicans/ultraestrutura , Candidíase Bucal/microbiologia , Candidíase Vulvovaginal/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genes Fúngicos , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley , Estomatite sob Prótese/microbiologia
4.
Proc Natl Acad Sci U S A ; 120(21): e2220568120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186823

RESUMO

A fundamental question in biology is how a eukaryotic cell type can be stably maintained through many rounds of DNA replication and cell division. In this paper, we investigate this question in a fungal species, Candida albicans, where two different cells types (white and opaque) arise from the same genome. Once formed, each cell type is stable for thousands of generations. Here, we investigate the mechanisms underlying opaque cell "memory." Using an auxin-mediated degradation system, we rapidly removed Wor1, the primary transcription activator of the opaque state and, using a variety of methods, determined how long cells can maintain the opaque state. Within approximately 1 h of Wor1 destruction, opaque cells irreversibly lose their memory and switch to the white cell state. This observation rules out several competing models for cell memory and demonstrates that the continuous presence of Wor1 is needed to maintain the opaque cell state-even across a single cell division cycle. We also provide evidence for a threshold concentration of Wor1 in opaque cells, below which opaque cells irreversibly switch to white cells. Finally, we provide a detailed description of the gene expression changes that occur during this switch in cell types.


Assuntos
Eucariotos , Células Eucarióticas , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclo Celular , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/metabolismo , Fenótipo
5.
Proc Natl Acad Sci U S A ; 120(28): e2302445120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399378

RESUMO

Cells regulate gene expression by the specific binding of transcription regulators to cis-regulatory sequences. Pair-wise cooperativity between regulators-whereby two different regulators physically interact and bind DNA in a cooperative manner-is common and permits complex modes of gene regulation. Over evolutionary timescales, the formation of new combinations of regulators represents a major source of phenotypic novelty, facilitating new network structures. How functional, pair-wise cooperative interactions arise between regulators is poorly understood, despite the abundance of examples in extant species. Here, we explore a protein-protein interaction between two ancient transcriptional regulators-the homeodomain protein Matα2 and the MADS box protein Mcm1-that was gained approximately 200 million y ago in a clade of ascomycete yeasts that includes Saccharomyces cerevisiae. By combining deep mutational scanning with a functional selection for cooperative gene expression, we tested millions of possible alternative evolutionary solutions to this interaction interface. The artificially evolved, functional solutions are highly degenerate, with diverse amino acid chemistries permitted at all positions but with widespread epistasis limiting success. Nonetheless, approximately ~45% of the random sequences sampled function as well or better in controlling gene expression than the naturally evolved sequence. From these variants (which are unconstrained by historical contingency), we discern structural rules and epistatic constraints governing the emergence of cooperativity between these two transcriptional regulators. This work provides a mechanistic basis for long-standing observations of transcription network plasticity and highlights the importance of epistasis in the evolution of new protein-protein interactions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Genes Dev ; 31(14): 1397-1405, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28860157

RESUMO

Transcription regulators bind to cis-regulatory sequences and thereby control the expression of target genes. While transcription regulators and the target genes that they regulate are often deeply conserved across species, the connections between the two change extensively over evolutionary timescales. In this review, we discuss case studies where, despite this extensive evolutionary rewiring, the resulting patterns of gene expression are preserved. We also discuss in silico models that reach the same general conclusions and provide additional insights into how this process occurs. Together, these approaches make a strong case that the preservation of gene expression patterns in the wake of extensive rewiring is a general feature of transcription circuit evolution.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Transcrição Gênica , Animais , Ascomicetos/genética , Simulação por Computador , Processos de Determinação Sexual/genética , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723044

RESUMO

Candida albicans is the most common cause of systemic fungal infections in humans and is considerably more virulent than its closest known relative, Candida dubliniensis. To investigate this difference, we constructed interspecies hybrids and quantified mRNA levels produced from each genome in the hybrid. This approach systematically identified expression differences in orthologous genes arising from cis-regulatory sequence changes that accumulated since the two species last shared a common ancestor, some 10 million y ago. We documented many orthologous gene-expression differences between the two species, and we pursued one striking observation: All 15 genes coding for the enzymes of glycolysis showed higher expression from the C. albicans genome than the C. dubliniensis genome in the interspecies hybrid. This pattern requires evolutionary changes to have occurred at each gene; the fact that they all act in the same direction strongly indicates lineage-specific natural selection as the underlying cause. To test whether these expression differences contribute to virulence, we created a C. dubliniensis strain in which all 15 glycolysis genes were produced at modestly elevated levels and found that this strain had significantly increased virulence in the standard mouse model of systemic infection. These results indicate that small expression differences across a deeply conserved set of metabolism enzymes can play a significant role in the evolution of virulence in fungal pathogens.


Assuntos
Evolução Biológica , Candida/classificação , Candida/genética , Seleção Genética , Alelos , Candida/metabolismo , Candida/patogenicidade , Candidíase/microbiologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Genes Fúngicos , Hibridização Genética , Virulência/genética
8.
Proc Natl Acad Sci U S A ; 116(52): 26918-26924, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822605

RESUMO

Differentiated cell types often retain their characteristics through many rounds of cell division. A simple example is found in Candida albicans, a member of the human microbiota and also the most prevalent fungal pathogen of humans; here, two distinct cell types (white and opaque) exist, and each one retains its specialized properties across many cell divisions. Switching between the two cell types is rare in standard laboratory medium (2% glucose) but can be increased by signals in the environment, for example, certain sugars. When these signals are removed, switching ceases and cells remain in their present state, which is faithfully passed on through many generations of daughter cells. Here, using an automated flow cytometry assay to monitor white-opaque switching over 96 different sugar concentrations, we observed a wide range of opaque-to-white switching that varied continuously across different sugar compositions of the medium. By also measuring white cell proliferation rates under each condition, we found that both opaque-to-white switching and selective white cell proliferation are required for entire populations to shift from opaque to white. Moreover, the switching frequency correlates with the preference of the resulting cell type for the growth medium; that is, the switching is adjusted to increase in environments that favor white cell proliferation. The widely adjustable, all-or-none nature of the switch, combined with the long-term heritability of each state, is distinct from conventional forms of gene regulation, and we propose that it represents a strategy used by C. albicans to efficiently colonize different niches of its human host.

9.
Genes Dev ; 28(12): 1272-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24874988

RESUMO

The duplication of transcription regulators can elicit major regulatory network rearrangements over evolutionary timescales. However, few examples of duplications resulting in gene network expansions are understood in molecular detail. Here we show that four Candida albicans transcription regulators that arose by successive duplications have differentiated from one another by acquiring different intrinsic DNA-binding specificities, different preferences for half-site spacing, and different associations with cofactors. The combination of these three mechanisms resulted in each of the four regulators controlling a distinct set of target genes, which likely contributed to the adaption of this fungus to its human host. Our results illustrate how successive duplications and diversification of an ancestral transcription regulator can underlie major changes in an organism's regulatory circuitry.


Assuntos
Candida albicans/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica/genética , Genes Fúngicos/genética , Fatores de Transcrição/genética , Animais , Candida albicans/classificação , Interações Hospedeiro-Patógeno/genética , Humanos , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Filogenia , Ligação Proteica , Fatores de Transcrição/metabolismo
10.
Nature ; 523(7560): 361-5, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26153861

RESUMO

Epistasis-the non-additive interactions between different genetic loci-constrains evolutionary pathways, blocking some and permitting others. For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeast. A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analysing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways.


Assuntos
Evolução Molecular , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Sítios de Ligação , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Epistasia Genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Fúngicos/genética , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/genética , Kluyveromyces/metabolismo , Fator de Acasalamento , Peptídeos/metabolismo , Peptídeos/farmacologia , Feromônios/metabolismo , Feromônios/farmacologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
11.
Annu Rev Microbiol ; 69: 71-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488273

RESUMO

In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species.


Assuntos
Biofilmes , Candida albicans/fisiologia , Candidíase/microbiologia , Fungos/fisiologia , Animais , Candida albicans/citologia , Candida albicans/crescimento & desenvolvimento , Candidíase/patologia , Adesão Celular , Fungos/classificação , Humanos , Micoses/microbiologia , Micoses/patologia
12.
Acta Odontol Scand ; 77(1): 28-32, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30387687

RESUMO

Objectives: To evaluate SmearOFF, 7% maleic acid (MA) and two different preparations of ethylenediaminetetraacetic acid (EDTA) in smear layer removal.Materials and methods: Fifty single-rooted teeth were separated into five groups, instrumented and irrigated as follows: (1) SmearOFF, (2) 7% MA, (3) 18% EDTA (pH 11.4), (4) 17% EDTA (pH 8.5) and (5) 0.9% saline. Teeth samples were blinded and examined by scanning electron microscopy with Image J software.Results: Eighteen percent EDTA was less efficient when compared to SmearOFF and MA at all thirds of the root canal system. There was no difference between SmearOFF and MA in the coronal and middle thirds. In the apical third, MA removed more smear layer. Seventeen percent EDTA was as efficient as SmearOFF and MA in coronal and middle third but not in the apical third. Eighteen percent EDTA removed smear layer less efficiently in the coronal and middle thirds than 17% EDTA; in the apical third, there was no difference observed. In the saline group, all specimens were heavily smeared. There was no significant difference between 18% EDTA and saline at all canal thirds.Conclusions: SmearOFF and 17% EDTA (pH 8.5) had better smear layer removal capability in the coronal and middle thirds of the root canal system. In the apical third, 7% MA was superior. 18% EDTA (pH 11.4) and saline had poor smear layer removal ability.


Assuntos
Cavidade Pulpar/efeitos dos fármacos , Ácido Edético/farmacologia , Maleatos/farmacologia , Irrigantes do Canal Radicular , Preparo de Canal Radicular/métodos , Camada de Esfregaço , Dentina/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Hipoclorito de Sódio
13.
Mol Pharmacol ; 93(5): 468-476, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29439087

RESUMO

GABAA receptors activated by the transmitter GABA are potentiated by several allosterically acting drugs, including the intravenous anesthetic propofol. Propofol can also directly activate the receptor, albeit at higher concentrations. Previous functional studies have identified amino acid residues whose substitution reduces potentiation of GABA-activated receptors by propofol while enhancing the ability of propofol to directly activate the receptor. One interpretation of such observations is that the mutation has specific effects on the sites or processes involved in potentiation or activation. We show here that divergent effects on potentiation and direct activation can be mediated by increased constitutive open probability in the mutant receptor without any specific effect on the interactions between the allosteric drug and the receptor. By simulating GABAA receptor activity using the concerted transition model, we demonstrate that the predicted degree of potentiation is reduced as the level of constitutive activity increases. The model further predicts that a potentiating effect of an allosteric modulator is a computable value that depends on the level of constitutive activity, the amplitude of the response to the agonist, and the amplitude of the direct activating response to the modulator. Specific predictions were confirmed by electrophysiological data from the binary α1ß3 and concatemeric ternary ß2α1γ2L+ß2α1 GABAA receptors. The corollaries of reduced potentiation due to increased constitutive activity are isobolograms that conform to simple additivity and a loss of separation between the concentration-response relationships for direct activation and potentiation.


Assuntos
Anestésicos Intravenosos/farmacologia , Mutação , Propofol/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Regulação Alostérica , Anestésicos Intravenosos/metabolismo , Animais , Células Cultivadas , Sinergismo Farmacológico , Agonistas GABAérgicos/farmacologia , Humanos , Propofol/metabolismo , Receptores de GABA-A/metabolismo , Xenopus , Ácido gama-Aminobutírico/metabolismo
14.
Mol Pharmacol ; 93(2): 178-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192122

RESUMO

GABAA receptors can be directly activated and potentiated by the intravenous anesthetic propofol. Previous photolabeling, modeling, and functional data have identified two binding domains through which propofol acts on the GABAA receptor. These domains are defined by the ß(M286) residue at the ß"+"-α"-" interface in the transmembrane region and the ß(Y143) residue near the ß"-" surface in the junction between the extracellular and transmembrane domains. In the ternary receptor, there are predicted to be two copies of each class of sites, for a total of four sites per receptor. We used ß2α1γ2L and ß2α1 concatemeric constructs to determine the functional effects of the ß(Y143W) and ß(M286W) mutations to gain insight into the number of functional binding sites for propofol and the energetic contributions stemming from propofol binding to the individual sites. A mutation of each of the four sites affected the response to propofol, indicating that each of the four sites is functional in the wild-type receptor. The mutations mainly impaired stabilization of the open state by propofol, i.e., reduced gating efficacy. The effects were similar for mutations at either site and were largely additive and independent of the presence of other Y143W or M286W mutations in the receptor. The two classes of sites appeared to differ in affinity for propofol, with the site affected by M286W having about a 2-fold higher affinity. Our analysis indicates there may be one or two additional functionally equivalent binding sites for propofol, other than those modified by substitutions at ß(Y143) and ß(M286).


Assuntos
Anestésicos Intravenosos/farmacologia , Propofol/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/metabolismo , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Mutação , Propofol/administração & dosagem , Propofol/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/genética , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 112(24): 7478-83, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25944934

RESUMO

Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Quirópteros/microbiologia , Colagenases/metabolismo , Proteínas Fúngicas/metabolismo , Micoses/veterinária , Sequência de Aminoácidos , Animais , Ascomicetos/genética , Sequência de Bases , Domínio Catalítico , Colagenases/química , Colagenases/genética , DNA Fúngico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Dados de Sequência Molecular , Micoses/microbiologia , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Virulência
16.
Artigo em Inglês | MEDLINE | ID: mdl-28507115

RESUMO

White and opaque cells of Candida albicans have the same genome but differ in gene expression patterns, metabolic profiles, and host niche preferences. We tested whether these differences, which include the differential expression of drug transporters, resulted in different sensitivities to 27 antifungal agents. The analysis was performed in two different strain backgrounds; although there was strain-to-strain variation, only terbinafine hydrochloride and caspofungin showed consistent, 2-fold differences between white and opaque cells across both strains.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/microbiologia , Regulação Fúngica da Expressão Gênica , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Caspofungina , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Naftalenos/farmacologia , Fenótipo , Terbinafina
17.
Artigo em Inglês | MEDLINE | ID: mdl-28289028

RESUMO

Candida albicans biofilms have a significant medical impact due to their rapid growth on implanted medical devices, their resistance to antifungal drugs, and their ability to seed disseminated infections. Biofilm assays performed in vitro allow for rapid, high-throughput screening of gene deletion libraries or antifungal compounds and typically serve as precursors to in vivo studies. Here, we compile and discuss the protocols for several recently published C. albicansin vitro biofilm assays. We also describe improved versions of these protocols as well as novel in vitro assays. Finally, we consider some of the advantages and disadvantages of these different types of assays.


Assuntos
Antifúngicos/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Adesão Celular/fisiologia , Microfluídica/métodos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Caspofungina , Equinocandinas/farmacologia , Humanos , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Infecções Relacionadas à Prótese/microbiologia
18.
Proc Natl Acad Sci U S A ; 111(29): 10404-10, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24994900

RESUMO

WOPR-domain proteins are found throughout the fungal kingdom where they function as master regulators of cell morphology and pathogenesis. Genetic and biochemical experiments previously demonstrated that these proteins bind to specific DNA sequences and thereby regulate transcription. However, their primary sequence showed no relationship to any known DNA-binding domain, and the basis for their ability to recognize DNA sequences remained unknown. Here, we describe the 2.6-Å crystal structure of a WOPR domain in complex with its preferred DNA sequence. The structure reveals that two highly conserved regions, separated by an unconserved linker, form an interdigitated ß-sheet that is tilted into the major groove of DNA. Although the main interaction surface is in the major groove, the highest-affinity interactions occur in the minor groove, primarily through a deeply penetrating arginine residue. The structure reveals a new, unanticipated mechanism by which proteins can recognize specific sequences of DNA.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/patogenicidade , Aminoácidos/metabolismo , Sequência de Bases , Sequência Conservada/genética , Cristalografia por Raios X , DNA Fúngico/química , DNA Fúngico/metabolismo , Evolução Molecular , Fungos/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Transativadores/química , Transativadores/metabolismo , Ativação Transcricional/genética
19.
Mol Microbiol ; 96(6): 1226-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25784162

RESUMO

Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica
20.
PLoS Biol ; 11(3): e1001510, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23526879

RESUMO

Systemic, life-threatening infections in humans are often caused by bacterial or fungal species that normally inhabit a different locale in our body, particularly mucosal surfaces. A hallmark of these opportunistic pathogens, therefore, is their ability to thrive in disparate niches within the host. In this work, we investigate the transcriptional circuitry and gene repertoire that enable the human opportunistic fungal pathogen Candida albicans to proliferate in two different niches. By screening a library of transcription regulator deletion strains in mouse models of intestinal colonization and systemic infection, we identified eight transcription regulators that play roles in at least one of these models. Using genome-wide chromatin immunoprecipitation, we uncovered a network comprising ∼800 target genes and a tightly knit transcriptional regulatory circuit at its core. The network is enriched with genes upregulated in C. albicans cells growing in the host. Our findings indicate that many aspects of commensalism and pathogenicity are intertwined and that the ability of this microorganism to colonize multiple niches relies on a large, integrated circuit.


Assuntos
Candida albicans/fisiologia , Candida albicans/patogenicidade , Animais , Candida albicans/metabolismo , Candidíase/genética , Candidíase/microbiologia , Feminino , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA