Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
RNA ; 28(3): 371-389, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34934010

RESUMO

The two subunits of the eukaryotic ribosome are produced through quasi-independent pathways involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. One of the earliest intermediates of the small subunit (SSU or 40S) is the SSU processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors could induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S.


Assuntos
Metiltransferases/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Metiltransferases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
2.
PLoS Genet ; 16(12): e1009215, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306676

RESUMO

The first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of ribosomal RNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the amino acid substitutions weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the essential GTPase Bms1, which acts late in the disassembly pathway, and the RNA helicase Dhr1, which catalyzes U3 snoRNA removal. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and ribosomal RNA processing defects. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression.


Assuntos
Metiltransferases/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Metiltransferases/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
3.
EMBO J ; 36(7): 854-868, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28179369

RESUMO

During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo-electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin-ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Biogênese de Organelas , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/química , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
4.
Curr Genet ; 67(5): 729-738, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33844044

RESUMO

The assembly of eukaryotic ribosomes follows an assembly line-like pathway in which numerous trans-acting biogenesis factors act on discrete pre-ribosomal intermediates to progressively shape the nascent subunits into their final functional architecture. Recent advances in cryo-electron microscopy have led to high-resolution structures of many pre-ribosomal intermediates; however, these static snapshots do not capture the dynamic transitions between these intermediates. To this end, molecular genetics can be leveraged to reveal how the biogenesis factors drive these dynamic transitions. Here, we briefly review how we recently used the deletion of BUD23 (bud23∆) to understand its role in the assembly of the ribosomal small subunit. The strong growth defect of bud23∆ mutants places a selective pressure on yeast cells for the occurrence of extragenic suppressors that define a network of functional interactions among biogenesis factors. Mapping these suppressing mutations to recently published structures of pre-ribosomal complexes allowed us to contextualize these suppressing mutations and derive a detailed model in which Bud23 promotes a critical transition event to facilitate folding of the central pseudoknot of the small subunit. This mini-review highlights how genetics can be used to understand the dynamics of complex structures, such as the maturing ribosome.


Assuntos
Biogênese de Organelas , Ribossomos/genética , Ribossomos/fisiologia , Saccharomyces cerevisiae/fisiologia , Humanos , Metiltransferases/genética , Metiltransferases/fisiologia , Modelos Moleculares , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
5.
RNA ; 25(11): 1549-1560, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31439809

RESUMO

The ribosomal protein Rpl1 (uL1 in universal nomenclature) is essential in yeast and constitutes part of the L1 stalk which interacts with E site ligands on the ribosome. Structural studies of nascent pre-60S complexes in yeast have shown that a domain of the Crm1-dependent nuclear export adapter Nmd3, binds in the E site and interacts with Rpl1, inducing closure of the L1 stalk. Based on this observation, we decided to reinvestigate the role of the L1 stalk in nuclear export of pre-60S subunits despite previous work showing that Rpl1-deficient ribosomes are exported from the nucleus and engage in translation. Large cargoes, such as ribosomal subunits, require multiple export factors to facilitate their transport through the nuclear pore complex. Here, we show that pre-60S subunits lacking Rpl1 or truncated for the RNA of the L1 stalk are exported inefficiently. Surprisingly, this is not due to a measurable defect in the recruitment of Nmd3 but appears to result from inefficient recruitment of the Mex67-Mtr2 heterodimer.


Assuntos
Transporte Ativo do Núcleo Celular , Subunidades Ribossômicas Maiores/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Dimerização , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
RNA ; 24(9): 1214-1228, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29925570

RESUMO

The SSU processome (sometimes referred to as 90S) is an early stable intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU processome. Thus, release of U3 is a prerequisite for the transition to pre-40S. Our laboratory proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA (CRAC) and yeast two-hybrid interaction to characterize how Utp14 interacts with the preribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that the presence of Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU processome to Dhr1 and possibly to the exosome as well.


Assuntos
RNA Nucleolar Pequeno/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , Exossomos/metabolismo , Modelos Moleculares , Mutação , Proteômica/métodos , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
PLoS Genet ; 13(7): e1006894, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715419

RESUMO

Mutations in the ribosomal protein Rpl10 (uL16) can be drivers of T-cell acute lymphoblastic leukemia (T-ALL). We previously showed that these T-ALL mutations disrupt late cytoplasmic maturation of the 60S ribosomal subunit, blocking the release of the trans-acting factors Nmd3 and Tif6 in S. cerevisiae. Consequently, these mutant ribosomes do not efficiently pass the cytoplasmic quality control checkpoint and are blocked from engaging in translation. Here, we characterize suppressing mutations of the T-ALL-related rpl10-R98S mutant that bypass this block and show that the molecular defect of rpl10-R98S is a failure to release Nmd3 from the P site. Suppressing mutations were identified in Nmd3 and Tif6 that disrupted interactions between Nmd3 and the ribosome, or between Nmd3 and Tif6. Using an in vitro system with purified components, we found that Nmd3 inhibited Sdo1-stimulated Efl1 activity on mutant rpl10-R98S but not wild-type 60S subunits. Importantly, this inhibition was overcome in vitro by mutations in Nmd3 that suppressed rpl10-R98S in vivo. These results strongly support a model that Nmd3 must be dislodged from the P site to allow Sdo1 activation of Efl1, and define a failure in the removal of Nmd3 as the molecular defect of the T-ALL-associated rpl10-R98S mutation.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Supressão Genética , Alelos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo
8.
Genes Dev ; 25(9): 898-900, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21536731

RESUMO

Mutations in the human SBDS (Shwachman-Bodian-Diamond syndrome) gene are the most common cause of Shwachman-Diamond syndrome, an inherited bone marrow failure syndrome. In this issue of Genes & Development, Finch and colleagues (pp. 917-929) establish that SBDS functions in ribosome synthesis by promoting the recycling of eukaryotic initiation factor 6 (eIF6) in a GTP-dependent manner. This work supports the idea that a ribosomopathy may underlie this syndrome.


Assuntos
Ribossomos/patologia , Animais , Doenças da Medula Óssea/sangue , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/fisiopatologia , Osso e Ossos/patologia , Modelos Animais de Doenças , Insuficiência Pancreática Exócrina/sangue , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/fisiopatologia , Humanos , Lipomatose , Fator G para Elongação de Peptídeos/metabolismo , Fosforilação , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Síndrome de Shwachman-Diamond
9.
J Biol Chem ; 292(2): 585-596, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27913624

RESUMO

Eukaryotic ribosomes are composed of rRNAs and ribosomal proteins. Ribosomal proteins are translated in the cytoplasm and imported into the nucleus for assembly with the rRNAs. It has been shown that chaperones or karyopherins responsible for import can maintain the stability of ribosomal proteins by neutralizing unfavorable positive charges and thus facilitate their transports. Among 79 ribosomal proteins in yeast, only a few are identified with specific chaperones. Besides the classic role in maintaining protein stability, chaperones have additional roles in transport, chaperoning the assembly site, and dissociation of ribosomal proteins from karyopherins. Bcp1 has been shown to be necessary for the export of Mss4, a phosphatidylinositol 4-phosphate 5-kinase, and required for ribosome biogenesis. However, its specific function in ribosome biogenesis has not been described. Here, we show that Bcp1 dissociates Rpl23 from the karyopherins and associates with Rpl23 afterward. Loss of Bcp1 causes instability of Rpl23 and deficiency of 60S subunits. In summary, Bcp1 is a novel 60S biogenesis factor via chaperoning Rpl23 in the nucleus.


Assuntos
Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
PLoS Biol ; 13(2): e1002083, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25710520

RESUMO

In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Pareamento de Bases , Sequência de Bases , Temperatura Baixa , RNA Helicases DEAD-box/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual , Biossíntese de Proteínas , Precursores de RNA/química , Precursores de RNA/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell ; 39(2): 196-208, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20670889

RESUMO

In eukaryotic cells the final maturation of ribosomes occurs in the cytoplasm, where trans-acting factors are removed and critical ribosomal proteins are added for functionality. Here, we have carried out a comprehensive analysis of cytoplasmic maturation, ordering the known steps into a coherent pathway. Maturation is initiated by the ATPase Drg1. Downstream, assembly of the ribosome stalk is essential for the release of Tif6. The stalk recruits GTPases during translation. Because the GTPase Efl1, which is required for the release of Tif6, resembles the translation elongation factor eEF2, we suggest that assembly of the stalk recruits Efl1, triggering a step in 60S biogenesis that mimics aspects of translocation. Efl1 could thereby provide a mechanism to functionally check the nascent subunit. Finally, the release of Tif6 is a prerequisite for the release of the nuclear export adaptor Nmd3. Establishing this pathway provides an important conceptual framework for understanding ribosome maturation.


Assuntos
Citoplasma/metabolismo , Biossíntese de Proteínas/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Citoplasma/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(15): 5640-5, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706786

RESUMO

Ribosomopathies are a class of diseases caused by mutations that affect the biosynthesis and/or functionality of the ribosome. Although they initially present as hypoproliferative disorders, such as anemia, patients have elevated risk of hyperproliferative disease (cancer) by midlife. Here, this paradox is explored using the rpL10-R98S (uL16-R98S) mutant yeast model of the most commonly identified ribosomal mutation in acute lymphoblastic T-cell leukemia. This mutation causes a late-stage 60S subunit maturation failure that targets mutant ribosomes for degradation. The resulting deficit in ribosomes causes the hypoproliferative phenotype. This 60S subunit shortage, in turn, exerts pressure on cells to select for suppressors of the ribosome biogenesis defect, allowing them to reestablish normal levels of ribosome production and cell proliferation. However, suppression at this step releases structurally and functionally defective ribosomes into the translationally active pool, and the translational fidelity defects of these mutants culminate in destabilization of selected mRNAs and shortened telomeres. We suggest that in exchange for resolving their short-term ribosome deficits through compensatory trans-acting suppressors, cells are penalized in the long term by changes in gene expression that ultimately undermine cellular homeostasis.


Assuntos
Carcinogênese/genética , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/patologia , Ribossomos/genética , Ribossomos/fisiologia , Proteína Ribossômica L10 , Proteínas Ribossômicas/química , Ribossomos/química , Saccharomyces cerevisiae
13.
Nucleic Acids Res ; 42(3): 2049-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24214990

RESUMO

Ribosomes transit between two conformational states, non-rotated and rotated, through the elongation cycle. Here, we present evidence that an internal loop in the essential yeast ribosomal protein rpL10 is a central controller of this process. Mutations in this loop promote opposing effects on the natural equilibrium between these two extreme conformational states. rRNA chemical modification analyses reveals allosteric interactions involved in coordinating intersubunit rotation originating from rpL10 in the core of the large subunit (LSU) through both subunits, linking all the functional centers of the ribosome. Mutations promoting rotational disequilibria showed catalytic, biochemical and translational fidelity defects. An rpL3 mutation promoting opposing structural and biochemical effects, suppressed an rpL10 mutant, re-establishing rotational equilibrium. The rpL10 loop is also involved in Sdo1p recruitment, suggesting that rotational status is important for ensuring late-stage maturation of the LSU, supporting a model in which pre-60S subunits undergo a 'test drive' before final maturation.


Assuntos
Proteínas Ribossômicas/química , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/química , Regulação Alostérica , Ligantes , Mutação , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/química , Proteína Ribossômica L10 , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Rotação , Proteínas de Saccharomyces cerevisiae/genética
14.
RNA ; 19(6): 828-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23604635

RESUMO

Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.


Assuntos
Endorribonucleases/metabolismo , Metiltransferases/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Endorribonucleases/genética , Estabilidade Enzimática , Deleção de Genes , Imunoprecipitação , Metiltransferases/genética , Viabilidade Microbiana , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Fenótipo , Plasmídeos/genética , Plasmídeos/metabolismo , Mapeamento de Interação de Proteínas , Clivagem do RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
15.
Nucleic Acids Res ; 41(2): 1135-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23175604

RESUMO

Ribosome biogenesis is a multi-step process that couples cell growth with cell proliferation. Although several large-scale analysis of pre-ribosomal particles have identified numerous trans-acting factors involved in this process, many proteins involved in pre-rRNA processing and ribosomal subunit maturation have yet to be identified. Las1 was originally identified in Saccharomyces cerevisiae as a protein involved in cell morphogenesis. We previously demonstrated that the human homolog, Las1L, is required for efficient ITS2 rRNA processing and synthesis of the 60S ribosomal subunit. Here, we report that the functions of Las1 in ribosome biogenesis are also conserved in S. cerevisiae. Depletion of Las1 led to the accumulation of both the 27S and 7S rRNA intermediates and impaired the synthesis of the 60S subunit. We show that Las1 co-precipitates mainly with the 27S rRNA and associates with an Nsa1 and Rix1-containing pre-60S particle. We further identify Grc3 as a major Las1-interacting protein. We demonstrate that the kinase activity of Grc3 is required for efficient pre-rRNA processing and that depletion of Grc3 leads to rRNA processing defects similar to the ones observed in Las1-depleted cells. We propose that Las1 and Grc3 function together in a conserved mechanism to modulate rRNA processing and eukaryotic ribosome biogenesis.


Assuntos
Proteínas Nucleares/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas Nucleares/fisiologia , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/fisiologia , Precursores de RNA/metabolismo , Proteínas Ribossômicas/análise , Subunidades Ribossômicas Maiores de Eucariotos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/fisiologia
16.
Trends Biochem Sci ; 35(5): 260-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20137954

RESUMO

In eukaryotic cells, ribosomes are pre-assembled in the nucleus and exported to the cytoplasm where they undergo final maturation. This involves the release of trans-acting shuttling factors, transport factors, incorporation of the remaining ribosomal proteins, and final rRNA processing steps. Recent work, particularly on the large (60S) ribosomal subunit, has confirmed that the 60S subunit is exported from the nucleus in a functionally inactive state. Its arrival in the cytoplasm triggers events that render it translationally competent. Here we focus on these cytoplasmic maturation events and speculate why eukaryotic cells have evolved such an elaborate maturation pathway.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Eucarióticas/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Transporte Biológico/genética , Núcleo Celular/genética , Citoplasma/genética , Eucariotos , Proteínas Ribossômicas/genética , Ribossomos/genética , Transativadores/genética , Transativadores/metabolismo
17.
Mol Cell Biol ; : 1-13, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133101

RESUMO

LSG1 is a conserved GTPase involved in ribosome assembly. It is required for the eviction of the nuclear export adapter NMD3 from the pre-60S subunit in the cytoplasm. In human cells, LSG1 has also been shown to interact with vesicle-associated membrane protein-associated proteins (VAPs) that are found primarily on the endoplasmic reticulum. VAPs interact with a large host of proteins which contain FFAT motifs (two phenylalanines (FF) in an acidic tract) and are involved in many cellular functions including membrane traffic and regulation of lipid transport. Here, we show that human LSG1 binds to VAPs via a noncanonical FFAT-like motif. Deletion of this motif specifically disrupts the localization of LSG1 to the ER, without perturbing LSG1-dependent recycling of NMD3 in cells or modulation of LSG1 GTPase activity in vitro.

18.
Nat Struct Mol Biol ; 30(1): 91-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536102

RESUMO

RNA modifications are widespread in biology and abundant in ribosomal RNA. However, the importance of these modifications is not well understood. We show that methylation of a single nucleotide, in the catalytic center of the large subunit, gates ribosome assembly. Massively parallel mutational scanning of the essential nuclear GTPase Nog2 identified important interactions with rRNA, particularly with the 2'-O-methylated A-site base Gm2922. We found that methylation of G2922 is needed for assembly and efficient nuclear export of the large subunit. Critically, we identified single amino acid changes in Nog2 that completely bypass dependence on G2922 methylation and used cryoelectron microscopy to directly visualize how methylation flips Gm2922 into the active site channel of Nog2. This work demonstrates that a single RNA modification is a critical checkpoint in ribosome biogenesis, suggesting that such modifications can play an important role in regulation and assembly of macromolecular machines.


Assuntos
RNA Ribossômico , Ribossomos , RNA Ribossômico/metabolismo , Metilação , Microscopia Crioeletrônica , Ribossomos/metabolismo , Núcleo Celular/metabolismo
20.
PLoS Biol ; 7(10): e1000213, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19806183

RESUMO

Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics-an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies-to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes-most with human orthologs-to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process.


Assuntos
Biologia Computacional/métodos , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Centrifugação com Gradiente de Concentração , Análise por Conglomerados , Mineração de Dados , Espectrometria de Massas , Precursores de RNA/metabolismo , Splicing de RNA , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA