RESUMO
The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.
RESUMO
Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.
Assuntos
Infecções por Bordetella , Complexo IV da Cadeia de Transporte de Elétrons , Animais , Camundongos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Infecções por Bordetella/microbiologia , Infecções Respiratórias/microbiologia , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/metabolismo , Bordetella bronchiseptica/enzimologia , Humanos , Sistema Respiratório/microbiologia , Sistema Respiratório/metabolismo , Evolução Biológica , Bordetella/genética , Bordetella/enzimologia , Bordetella pertussis/genética , Bordetella pertussis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genéticaRESUMO
SYNGAP1 is a Ras-GTPase-activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDDs). These mutations are highly penetrant and cause SYNGAP1-related intellectual disability (SRID), an NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances. Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning, and memory and have seizures. However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A. While reduction in Syngap1 mRNA varies from 30 to 50% depending on the specific mutation, both models show ~50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder.
Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Animais , Camundongos , Códon sem Sentido , Convulsões , Encéfalo , Modelos Animais de Doenças , Transtornos da Memória , Proteínas Ativadoras de ras GTPaseRESUMO
BACKGROUND: Discovering determinants of cardiomyocyte maturity is critical for deeply understanding the maintenance of differentiated states and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Forced dedifferentiation paired with oncogene expression is sufficient to drive cardiac regeneration, but elucidation of endogenous developmental regulators of the switch between regenerative and mature cardiomyocyte cell states is necessary for optimal design of regenerative approaches for heart disease. MBNL1 (muscleblind-like 1) regulates fibroblast, thymocyte, and erythroid differentiation and proliferation. Hence, we examined whether MBNL1 promotes and maintains mature cardiomyocyte states while antagonizing cardiomyocyte proliferation. METHODS: MBNL1 gain- and loss-of-function mouse models were studied at several developmental time points and in surgical models of heart regeneration. Multi-omics approaches were combined with biochemical, histological, and in vitro assays to determine the mechanisms through which MBNL1 exerts its effects. RESULTS: MBNL1 is coexpressed with a maturation-association genetic program in the heart and is regulated by the MEIS1/calcineurin signaling axis. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of estrogen-related receptor signaling was essential for maintaining cardiomyocyte maturity in adult myocytes. In accordance with these data, modulating MBNL1 dose tuned the temporal window of neonatal cardiac regeneration, where increased MBNL1 expression arrested myocyte proliferation and regeneration and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. However, MBNL1 deficiency was insufficient to promote regeneration in the adult heart because of cell cycle checkpoint activation. CONCLUSIONS: Here, MBNL1 was identified as an essential regulator of cardiomyocyte differentiated states, their developmental switch from hyperplastic to hypertrophic growth, and their regenerative potential through controlling an entire maturation program by stabilizing adult myocyte mRNAs during postnatal development and throughout adulthood. Targeting loss of cardiomyocyte maturity and downregulation of cell cycle inhibitors through MBNL1 deletion was not sufficient to promote adult regeneration.
Assuntos
Diferenciação Celular , Miócitos Cardíacos , Proteínas de Ligação a RNA , Regeneração , Animais , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Proliferação de Células , Transdução de Sinais , Proteína Meis1/genética , Proteína Meis1/metabolismo , Proteínas de Ligação a DNARESUMO
A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow, from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at the protein and peptide levels allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and ProteomeXchange under the identifier PXD051318.
Assuntos
Proteômica , Controle de Qualidade , Proteômica/métodos , Proteômica/normas , Reprodutibilidade dos Testes , Humanos , Fluxo de Trabalho , Peptídeos/análise , Peptídeos/normasRESUMO
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Assuntos
Pressão Sanguínea/imunologia , Citocinas/imunologia , Hipertensão/imunologia , Imunidade Adaptativa , Animais , Autoantígenos/imunologia , Autoimunidade , Bactérias/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Hipertensão/metabolismo , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Imunidade Inata , Fatores de Risco , Transdução de SinaisRESUMO
Nidulaxanthone A is a dimeric, dihydroxanthone natural product that was isolated in 2020 from Aspergillus sp. Structurally, the compound features an unprecedented heptacyclic 6/6/6/6/6/6/6 ring system which is unusual for natural xanthone dimers. Biosynthetically, nidulaxanthone A originates from the monomer nidulalin A via stereoselective Diels-Alder dimerization. To expedite the synthesis of nidulalin A and study the proposed dimerization, we developed methodology involving the use of allyl triflate for chromone ester activation, followed by vinylogous addition, to rapidly forge the nidulalin A scaffold in a four-step sequence which also features ketone desaturation using Bobbitt's oxoammonium salt. An asymmetric synthesis of nidulalin A was achieved using acylative kinetic resolution (AKR) of chiral, racemic 2H-nidulalin A. Dimerization of enantioenriched nidulalin A to nidulaxanthone A was achieved using solvent-free, thermolytic conditions. Computational studies have been conducted to probe both the oxoammonium-mediated desaturation and (4 + 2) dimerization events.
Assuntos
Cetonas , Xantinas , Cloreto de Sódio , DimerizaçãoRESUMO
Background. Silica nanoparticles found in sugarcane ash have been postulated to be a toxicant contributing to chronic kidney disease of unknown etiology (CKDu). However, while the administration of manufactured silica nanoparticles is known to cause chronic tubulointerstitial disease in rats, the effect of administering sugarcane ash on kidney pathology remains unknown. Here we investigate whether sugarcane ash can induce CKD in rats. Methods. Sugarcane ash was administered for 13 weeks into the nares of rats (5 mg/day for 5d/week), and blood, urine and kidney tissues were collected at 13 weeks (at the end of ash administration) and in a separate group of rats at 24 weeks (11 weeks after stopping ash administration). Kidney histology was evaluated, and inflammation and fibrosis (collagen deposition) measured. Results. Sugarcane ash exposure led to the accumulation of silica in the kidneys, lungs, liver and spleen of rats. Mild proteinuria developed although renal function was largely maintained. However, biopsies showed focal glomeruli with segmental glomerulosclerosis, and tubulointerstitial inflammation and fibrosis that tended to worsen even after the ash administration had been stopped. Staining for the lysosomal marker, LAMP-1, showed decreased staining in ash administered rats consistent with lysosomal activation. Conclusion. Sugarcane ash containing silica nanoparticles can cause CKD in rats.
RESUMO
Uric acid is a toxin retained with advancing kidney disease. Clinical manifestations of hyperuricemia include gout and systemic inflammation that are associated with increased risk of cardiovascular mortality. As many as one-third of all patients with chronic kidney disease have a history of gout, yet <25% of these patients are effectively treated to target serum urate levels of ≤6 mg/dl. A major reason for ineffective management of gout and hyperuricemia is the complexity in managing these patients, with some medications contraindicated and others requiring special dosing, potential drug interactions, and other factors. Consequently, many nephrologists do not primarily manage gout despite it being a common complication of chronic kidney disease, leaving management to the primary physician or rheumatologist. We believe that kidney specialists should consider gout as a major complication of chronic kidney disease and actively manage it in their patients. Here, we present insights from nephrologists and rheumatologists for a team approach to gout management that includes the nephrologist.
Assuntos
Gota , Insuficiência Renal Crônica , Gota/diagnóstico , Gota/tratamento farmacológico , Gota/etiologia , Gota/patologia , Humanos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Ácido Úrico/sangue , Diálise Renal/efeitos adversos , Transplante de Rim/efeitos adversosRESUMO
Bordetella species cause lower respiratory tract infections in mammals. B. pertussis and B. bronchiseptica are the causative agents of whooping cough and kennel cough, respectively. The current acellular vaccine for B. pertussis protects against disease but does not prevent transmission or colonization. Cases of pertussis are on the rise even in areas of high vaccination. The PlrSR two-component system, is required for persistence in the mouse lung. A partial plrS deletion strain and a plrS H521Q strain cannot survive past 3 days in the lung, suggesting PlrSR works in a phosphorylation-dependent mechanism. We characterized the biochemistry of B. bronchiseptica PlrSR and found that both proteins function as a canonical two-component system. His521 was essential and Glu522 was critical for PlrS autophosphorylation. Asn525 was essential for phosphatase activity. The PAS domain was critical for both PlrS autophosphorylation and phosphatase activities. PlrS could both phosphotransfer to and exert phosphatase activity toward PlrR. Unexpectedly, PlrR formed a tetramer when unphosphorylated and a dimer upon phosphorylation. Finally, we demonstrated the importance of PlrS phosphatase activity for persistence within the murine lung. By characterizing PlrSR we hope to guide future in vivo investigation for development of new vaccines and therapeutics.
Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Coqueluche , Camundongos , Animais , Fosforilação , Bordetella pertussis , Sistema Respiratório/microbiologia , Monoéster Fosfórico Hidrolases , Infecções por Bordetella/microbiologia , MamíferosRESUMO
Cyclic AMP (cAMP) signaling is essential to Mycobacterium tuberculosis (Mtb) pathogenesis. However, the roles of phosphodiesterases (PDEs) Rv0805, and the recently identified Rv1339, in cAMP homeostasis and Mtb biology are unclear. We found that Rv0805 modulates Mtb growth within mice, macrophages and on host-associated carbon sources. Mycobacterium bovis BCG grown on a combination of propionate and glycerol as carbon sources showed high levels of cAMP and had a strict requirement for Rv0805 cNMP hydrolytic activity. Supplementation with vitamin B12 or spontaneous genetic mutations in the pta-ackA operon restored the growth of BCGΔRv0805 and eliminated propionate-associated cAMP increases. Surprisingly, reduction of total cAMP levels by ectopic expression of Rv1339 restored only 20% of growth, while Rv0805 complementation fully restored growth despite a smaller effect on total cAMP levels. Deletion of an Rv0805 localization domain also reduced BCG growth in the presence of propionate and glycerol. We propose that localized Rv0805 cAMP hydrolysis modulates activity of a specialized pathway associated with propionate metabolism, while Rv1339 has a broader role in cAMP homeostasis. Future studies will address the biological roles of Rv0805 and Rv1339, including their impacts on metabolism, cAMP signaling and Mtb pathogenesis.
Assuntos
Mycobacterium tuberculosis , Diester Fosfórico Hidrolases , Animais , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Nucleotídeos Cíclicos/metabolismo , Propionatos/metabolismo , Virulência , Hidrólise , Vacina BCG/metabolismo , Glicerol/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismoRESUMO
A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.
Assuntos
Endófitos , Epichloe , Giberelinas , Herbivoria , Lolium , Microbiota , Simbiose , Endófitos/fisiologia , Animais , Epichloe/fisiologia , Lolium/microbiologia , Lolium/crescimento & desenvolvimento , Lolium/fisiologia , Giberelinas/metabolismo , Afídeos/fisiologia , Bactérias , Alcaloides/metabolismo , Defesa das Plantas contra HerbivoriaRESUMO
The persisting life-expectancy 'gap' between First Nations and non-First Nations Australians is fundamentally driven by the social determinants of health. These include income and social protection, access to adequate housing and food security, among others. These factors are particularly prominent in Central Australia. Inadequate housing has led to some of the highest rates of Streptococcus pyogenes infection in the world, which in turn drives an extremely high prevalence of rheumatic heart disease. Food insecurity and inadequate social protection manifesting as energy insecurity result in inadequate nutrition and have resulted in a huge burden of diabetes in Central Australia. These factors, combined with social exclusion, racism and the pervasive effect of colonisation, also drive a high rate of alcohol misuse. Only by prioritising equity in these 'social determinants' and emphasising the importance of First Nations leadership in formulating and implementing solutions will health inequity be addressed.
RESUMO
Sugarcane is the most widely cultivated crop in the world, with equatorial developing nations performing most of this agriculture. Burning sugarcane is a common practice to facilitate harvest, producing extremely high volumes of respirable particulate matter in the process. These emissions are known to have deleterious effects on agricultural workers and nearby communities, but the extent of this exposure and potential toxicity remain poorly characterized. As the epidemicof chronic kidney disease of an unknown etiology (CKDu) and its associated mortality continue to increase along with respiratory distress, there is an urgent need to investigate the causes, determine viable interventions to mitigate disease andimprove outcomes for groups experiencing disproportionate impact. The goal of this review is to establish the state of available literature, summarize what is known in terms of human health risk, and provide recommendations for what areas should be prioritized in research.
Assuntos
Fazendeiros , Exposição Ocupacional , Saccharum , Humanos , Exposição Ocupacional/efeitos adversos , Agricultura , Material Particulado/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/toxicidadeRESUMO
BACKGROUND: Exposure to extreme heat impacts millions of people worldwide and outdoor workers are among the populations most affected by hot temperatures. Heat stress induces several biological responses in humans, including the production of heat shock proteins (HSP) and antibodies against HSP (anti-HSP) which may play a central role in the body's cellular response to a hot environment. OBJECTIVE: This longitudinal study investigated the impact of elevated temperatures and humidity on the presence of HSP70 and anti-HSP70 and examined relationships with markers of kidney function in an at-risk workforce under conditions of extreme heat and exertion in Guatemala. METHODS: We collected ambient temperature and relative humidity data as well as biomarkers and clinical data from 40 sugarcane workers at the start and the end of a 6-month harvest. We used generalized mixed-effects models to estimate temperature effects on HSP70 and anti-HSP70 levels. In addition, we examined trends between HSP70 and anti-HSP70 levels and markers of kidney function across the harvest. RESULTS: At the end of the harvest, temperatures were higher, and workers had, on average, higher levels of HSP70 and anti-HSP70 compared to the beginning of the season. We observed significant increasing trends with temperature indices, heat index, and HSP70 levels. Maximum temperature was associated with HSP70 increments after controlling for age, systolic and diastolic blood pressure (ß: 0.21, 95% Confidence Interval: 0.09, 0.33). Kidney function decline across the harvest was associated with both higher levels of anti-HSP70 levels at the end of the harvest as well as greater increases in anti-HSP70 levels across the harvest. CONCLUSIONS: These results suggest that workplace heat exposure may increase the production of HSP70 and anti-HSP70 levels and that there may be a relationship between increasing anti-HSP70 antibodies and the development of renal injury. HSP70 holds promise as a biomarker of heat stress in exposed populations.
Assuntos
Biomarcadores , Fazendeiros , Proteínas de Choque Térmico HSP70 , Temperatura Alta , Exposição Ocupacional , Humanos , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/sangue , Estudos Longitudinais , Masculino , Biomarcadores/sangue , Adulto , Feminino , Exposição Ocupacional/efeitos adversos , Temperatura Alta/efeitos adversos , Pessoa de Meia-Idade , Guatemala , Rim , Agricultura , Anticorpos/sangue , Transtornos de Estresse por Calor , UmidadeRESUMO
A complication of reducing sugars is that they can undergo Maillard chemical reactions, forming advanced glycation end-products (AGEs) that can induce oxidative stress and inflammation via engagements with the main receptor for AGEs (RAGE) in various tissues. Certain sugars, such as glucose and fructose, are well known to cause AGE formation. Recently, allulose has emerged as a rare natural sugar that is an epimer of fructose and which is of low caloric content that is minimally metabolized, leading to it being introduced as a low-calorie sugar alternative. However, the relative ability of allulose to generate AGEs compared to glucose and fructose is not known. Here we assess the accumulation of AGEs in cell-free, in vitro, and in vivo conditions in response to allulose and compare it to glycation mediated by glucose or fructose. AGEs were quantified in cell-free samples, cell culture media and lysates, and rat serum with glycation-specific ELISAs. In cell-free conditions, we observed concentration and time-dependent increases in AGEs when bovine serum albumin (BSA) was incubated with glucose or fructose and significantly less glycation when incubated with allulose. AGEs were significantly elevated when pulmonary alveolar type II-like cells were co-incubated with glucose or fructose; however, significantly less AGEs were detected when cells were exposed to allulose. AGE quantification in serum obtained from rats fed a high-fat, low-carb (HFLC) Western diet for 2 weeks revealed significantly less glycation in animals co-administered allulose compared to those exposed to stevia. These results suggest allulose is associated with less AGE formation compared to fructose or glucose, and support its safety as a low-calorie sugar alternative.
Assuntos
Frutose , Produtos Finais de Glicação Avançada , Animais , Produtos Finais de Glicação Avançada/metabolismo , Ratos , Glicosilação , Frutose/metabolismo , Monossacarídeos/metabolismo , Glucose/metabolismo , Masculino , Soroalbumina Bovina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ratos Sprague-DawleyRESUMO
OBJECTIVE: To assess timeliness, efficiency, health outcomes and cost-effectiveness of the 2018 redesigned Central Australian aeromedical retrieval model. DESIGN: Pre- and postimplementation observational study of all patients receiving telehealth consultations from remote medical practitioners (RMPs) or Medical Retrieval and Consultation Centre (MRaCC) physicians between 1/1/2015 and 29/2/2020. Descriptive and inferential statistics measuring system efficiency, timeliness, health outcomes and incremental cost-effectiveness. FINDINGS: There were 9%-10% reductions in rates of total aeromedical retrievals, emergency department admissions and hospitalisations postimplementation, all p-values < 0.001. Usage rates for total hospital bed days and ICU hours were 17% lower (both p < 0.001). After adjusting for periodicity (12% fewer retrievals on weekends), each postimplementation year, there were 0.7 fewer retrievals/day (p = 0.002). The mean time from initial consultation to aeromedical departure declined by 18 minutes post-implementation (115 vs. 97 min, p = 0.007). The hazard of death within 365 days was nonsignificant (0.912, 95% CI 0.743-1.120). Postimplementation, it cost $302 more per hospital admission and $3051 more per year of life saved, with a 75% probability of cost-effectiveness. These costs excluded estimated savings of $744,528/year in reduced hospitalisations and the substantial social and out-of-pocket costs to patients and their families associated with temporary relocation to Alice Springs. CONCLUSION: Central Australia's new critical care consultant-led aeromedical retrieval model is more efficient, is dispatched faster and is more cost-effective. These findings are highly relevant to other remote regions in Australia and internationally that have comparable GP-led retrieval services.
Assuntos
Resgate Aéreo , Humanos , Austrália , Análise Custo-Benefício , Encaminhamento e Consulta , Avaliação de Resultados em Cuidados de SaúdeRESUMO
Chronic kidney disease (CKD) is a prevalent disease among felids; yet its origin is still poorly understood, and the disease often remains asymptomatic for years, underscoring the need for early diagnosis. This study aimed to investigate the diagnostic value of urinalysis in accurately staging CKD, particularly as routine health checks in large felids often overlook its significance. In this research, ultrasound-guided cystocentesis (UGC) was performed on 50 captive nondomestic felids during routine veterinary health checks under general anesthesia. Urinalysis included microscopic examination of the sediment, measurement of urine specific gravity (USG) and protein to creatinine ratio (UPC). Additional serum kidney markers, such as creatinine and symmetric dimethylarginine, were compared with USG and UPC to assess their diagnostic value as urinary biomarkers. The results demonstrated proteinuria (UPC > 0.4) or borderline proteinuria (UPC 0.2-0.4) in 49% of the animals. Among these cases, 62% were of renal origin, and 38% were postrenal causes. USG was significantly higher in felids with borderline proteinuria compared to those with proteinuria. A moderate, but significant negative correlation between serum parameters and USG was observed, emphasizing the importance of assessing both diagnostic parameters during kidney evaluations. Additionally, felids with CKD have an increased risk of urinary tract infections, necessitating microscopic urinalysis and bacterial culture analysis. Abnormalities, including hematuria, pyuria, crystalluria, and bacteriuria, were found in approximately 38% of cases through microscopical examination of urine. No complications associated with UGC were observed and abnormal findings were detected in 60% of the cases. Based on these results, the authors recommend the inclusion of UGC and urinalysis as standard diagnostic tools in general health checks for nondomestic felids. This approach provides valuable insights into the early detection and staging of CKD, supporting early intervention and supportive medical care to prolong renal health in these animals.
Assuntos
Insuficiência Renal Crônica , Urinálise , Animais , Urinálise/veterinária , Insuficiência Renal Crônica/veterinária , Insuficiência Renal Crônica/diagnóstico , Feminino , Masculino , Animais de Zoológico , Proteinúria/veterinária , Proteinúria/diagnósticoRESUMO
OBJECTIVE: The aim of this study was to describe the characteristics and outcomes of remote-dwelling pregnant women with threatened labor referred for air medical retrieval to a regional birthing center as well as factors associated with birth within 48 hours. METHODS: This was a retrospective observational study of all pregnant women in the remote Central Australian region referred to the Medical Retrieval Consultation and Coordination Centre for labor > 23 weeks' gestation between February 12, 2018, and February 12, 2020. Univariate and multivariate statistical analyses were performed. RESULTS: There were 116 women referred for retrieval for labor. There were no births during transport, and less than half of the cases resulted in birth within 48 hours of retrieval. Tocolysis was frequently used. Predictors of birth within 48 hours were cervical dilatation ≥ 5 cm, preterm gestational age, and ruptured membranes in the univariate analysis. Nearly one third of this cohort required intervention or had complications during birth. CONCLUSION: Birth during transport for threatened labor did not occur in this cohort, and more than half of the retrievals did not result in birth within 48 hours; however, the high risk of birth complications may offset any benefit of avoiding air medical transport from remote regions. Retrieval clinicians should consider urgent transfer in cases of ruptured membranes, cervical dilatation of 5 cm or more, or gestational age less than 37 weeks.
Assuntos
Ruptura Prematura de Membranas Fetais , Trabalho de Parto Prematuro , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Humanos , Lactente , Austrália , Estudos Retrospectivos , Idade GestacionalRESUMO
Urothelial cells, which play an essential role in barrier function, are also thought to play a sensory role in bladder physiology by releasing signaling molecules in response to sensory stimuli that act upon adjacent sensory neurons. However, it is challenging to study this communication due to the overlap in receptor expression and proximity of urothelial cells to sensory neurons. To overcome this challenge, we developed a mouse model where we can directly stimulate urothelial cells using optogenetics. We crossed a uroplakin II (UPK2) cre mouse with a mouse that expresses the light-activated cation channel channelrhodopsin-2 (ChR2) in the presence of cre expression. Optogenetic stimulation of urothelial cells cultured from UPK2-ChR2 mice initiates cellular depolarization and release of ATP. Cystometry recordings demonstrated that optical stimulation of urothelial cells increases bladder pressure and pelvic nerve activity. Increases in bladder pressure persisted, albeit to a lesser extent, when the bladder was excised in an in vitro preparation. The P2X receptor antagonist PPADS significantly reduced optically evoked bladder contractions in vivo and ex vivo. Furthermore, corresponding nerve activity was also inhibited with PPADS. Our data suggest that urothelial cells can initiate robust bladder contractions via sensory nerve signaling or contractions through local signaling mechanisms. These data support a foundation of literature demonstrating communication between sensory neurons and urothelial cells. Importantly, with further use of these optogenetic tools, we hope to scrutinize this signaling mechanism, its importance for normal micturition and nociception, and how it may be altered in pathophysiological conditions.NEW & NOTEWORTHY Urothelial cells play a sensory role in bladder function. However, it has been particularly challenging to study this communication as both sensory neurons and urothelial cells express similar sensory receptors. Here we demonstrate using an optogenetic technique, that specific urothelial stimulation alone resulted in bladder contractions. This approach will have a long-lasting impact on how we study urothelial-to-sensory neuron communication and the changes that occur under disease conditions.