Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 132(6): 275-283, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538721

RESUMO

Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.


Assuntos
Antozoários , Dinoflagellida , Variação Genética , Larva , Simbiose , Animais , Larva/genética , Larva/fisiologia , Antozoários/genética , Antozoários/fisiologia , Simbiose/genética , Dinoflagellida/genética , Dinoflagellida/fisiologia , Recifes de Corais , Termotolerância/genética , Mudança Climática , Feminino , Seleção Genética
2.
Mol Ecol ; 31(20): 5368-5385, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35960256

RESUMO

The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Filogenia , Simbiose/genética
3.
J Hered ; 111(1): 70-83, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943081

RESUMO

Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.


Assuntos
Especiação Genética , Filogeografia , Animais , Regiões Antárticas , Organismos Aquáticos , Peixes , Água Doce , Havaí , Invertebrados , Plantas
4.
Zootaxa ; 5369(1): 117-124, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38220724

RESUMO

Pocillopora tuahiniensis sp. nov. is described based on mitochondrial and nuclear genomic data, algal symbiont genetic data, geographic isolation, and its distribution pattern within reefs that is distinct from other sympatric Pocillopora species (Johnston et al. 2022a, b). Mitochondrial and nuclear genomic data reveal that P. tuahiniensis sp. nov. is a unique species, sister to P. verrucosa, and in a clade different from that of P. meandrina (Johnston et al. 2022a). However, the gross in situ colony appearance of P. tuahiniensis sp. nov. cannot easily be differentiated from that of P. verrucosa or P. meandrina at Moorea. By sequencing the mtORF region, P. tuahiniensis sp. nov. can be easily distinguished from other Pocillopora species. Pocillopora tuahiniensis sp. nov. has so far been sampled in French Polynesia, Ducie Island, and Rapa Nui (Armstrong et al. 2023; Edmunds et al. 2016; Forsman et al. 2013; Glin et al. 2017; Mayfield et al. 2015; Oury et al. 2021; Voolstra et al. 2023). On the fore reefs of Moorea, P. tuahiniensis sp. nov. is very abundant 10 m and is one of the most common Pocillopora species at these depths (Johnston et al. 2022b). It can also be found at a much lower abundance at shallow depths on the fore reef and back reef lagoon. The holotype is deposited at the Smithsonian Institution as USNM-SI 1522390 and the mtORF Genbank accession number is OP418359.


Assuntos
Antozoários , Animais , Recifes de Corais , Polinésia
5.
PeerJ ; 10: e13653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873907

RESUMO

The global decline of coral reefs has driven considerable interest in active coral restoration. Despite their importance and dominance on mature reefs, relatively few coral restoration projects use slower growth forms like massive and encrusting coral species. Micro-fragmentation can increase coral cover by orders of magnitude faster than natural growth, which now allows cultivation of slow growing massive forms and shows promise and flexibility for active reef restoration. However, the major causes of variation in growth and survival of outplanted colonies remain poorly understood. Here, we report simple outplanting assays to aid in active reef restoration of slower growing species and increase the likelihood of restoration success. We used two different micro-fragmentation assays. Pyramid assays were used to examine variation associated with fragment size (ranging from ≈1-9 cm2), nursery residence time (for both in-situ and ex-situ nurseries), and 2D vs. 3D measurements of growth. Block assays were used to examine spatial variation among individual performance at outplanting sites in the field. We found 2D and 3D measurements correlated well, so measured survivorship and growth using top-down planar images for two of the main Hawaiian reef building corals, the plating Montipora capitata and the massive Porites compressa. Pyramid assays housed and outplanted from the in-situ nursery showed no effect of residence time or size on overall survivorship or growth for either species. Results from the ex-situ nursery, however, varied by species, with P. compressa again showing no effect of nursery residence time or size on survivorship or growth. In contrast, nursery culture resulted in improved survivorship of small M. capitata fragments, but net growth showed a weak positive effect of nursery time for medium fragments. Small fragments still suffered higher mortality than either medium or large fragments. Due to their lower mortality, medium fragments (≈3 cm2) appear to be the best compromise between growth and survivorship for outplanting. Likewise, given weak positive gains relative to the investment, our results suggest that it could be more cost-effective to simply outplant medium fragments as soon as possible, without intermediate culture in a nursery. Furthermore, the block assay revealed significant differences in survivorship and growth among sites for individuals of both species, emphasizing the importance of considering spatial variation in coral survival and growth following outplanting. These results highlight the value of using short-term micro-fragmentation assays prior to outplanting to assess size, and location specific performance, optimizing the efficiency of active reef restoration activities and maximizing the probability of success for active coral restoration projects.


Assuntos
Antozoários , Animais , Recifes de Corais , Havaí
6.
Ecology ; 102(6): e03324, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33690896

RESUMO

Variation among functionally similar species in their response to environmental stress buffers ecosystems from changing states. Functionally similar species may often be cryptic species representing evolutionarily distinct genetic lineages that are morphologically indistinguishable. However, the extent to which cryptic species differ in their response to stress, and could therefore provide a source of response diversity, remains unclear because they are often not identified or are assumed to be ecologically equivalent. Here, we uncover differences in the bleaching response between sympatric cryptic species of the common Indo-Pacific coral, Pocillopora. In April 2019, prolonged ocean heating occurred at Moorea, French Polynesia. 72% of pocilloporid colonies bleached after 22 d of severe heating (>8o C-days) at 10 m depth on the north shore fore reef. Colony mortality ranged from 11% to 42% around the island four months after heating subsided. The majority (86%) of pocilloporids that died from bleaching belonged to a single haplotype, despite twelve haplotypes, representing at least five species, being sampled. Mitochondrial (open reading frame) sequence variation was greater between the haplotypes that experienced mortality versus haplotypes that all survived than it was between nominal species that all survived. Colonies > 30 cm in diameter were identified as the haplotype experiencing the most mortality, and in 1125 colonies that were not genetically identified, bleaching and mortality increased with colony size. Mortality did not increase with colony size within the haplotype suffering the highest mortality, suggesting that size-dependent bleaching and mortality at the genus level was caused instead by differences among cryptic species. The relative abundance of haplotypes shifted between February and August, driven by declines in the same common haplotype for which mortality was estimated directly, at sites where heat accumulation was greatest, and where larger colony sizes occurred. The identification of morphologically indistinguishable species that differ in their response to thermal stress, but share a similar ecological function in terms of maintaining a coral-dominated state, has important consequences for uncovering response diversity that drives resilience, especially in systems with low or declining functional diversity.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Ilhas , Polinésia
7.
PeerJ ; 6: e4355, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441239

RESUMO

Species within the scleractinian genus Pocillopora Lamarck 1816 exhibit extreme phenotypic plasticity, making identification based on morphology difficult. However, the mitochondrial open reading frame (mtORF) marker provides a useful genetic tool for identification of most species in this genus, with a notable exception of P. eydouxi and P. meandrina. Based on recent genomic work, we present a quick and simple, gel-based restriction fragment length polymorphism (RFLP) method for the identification of all six Pocillopora species occurring in Hawai'i by amplifying either the mtORF region, a newly discovered histone region, or both, and then using the restriction enzymes targeting diagnostic sequences we unambiguously identify each species. Using this approach, we documented frequent misidentification of Pocillopora species based on colony morphology. We found that P. acuta colonies are frequently mistakenly identified as P. damicornis in Kane'ohe Bay, O'ahu. We also found that P. meandrina likely has a northern range limit in the Northwest Hawaiian Islands, above which P. ligulata was regularly mistaken for P. meandrina.

8.
Sci Rep ; 7(1): 5991, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729652

RESUMO

Scleractinian corals of the genus Pocillopora (Lamarck, 1816) are notoriously difficult to identify morphologically with considerable debate on the degree to which phenotypic plasticity, introgressive hybridization and incomplete lineage sorting obscure well-defined taxonomic lineages. Here, we used RAD-seq to resolve the phylogenetic relationships among seven species of Pocillopora represented by 15 coral holobiont metagenomic libraries. We found strong concordance between the coral holobiont datasets, reads that mapped to the Pocillopora damicornis (Linnaeus, 1758) transcriptome, nearly complete mitochondrial genomes, 430 unlinked high-quality SNPs shared across all Pocillopora taxa, and a conspecificity matrix of the holobiont dataset. These datasets also show strong concordance with previously published clustering of the mitochondrial clades based on the mtDNA open reading frame (ORF). We resolve seven clear monophyletic groups, with no evidence for introgressive hybridization among any but the most recently derived sister species. In contrast, ribosomal and histone datasets, which are most commonly used in coral phylogenies to date, were less informative and contradictory to these other datasets. These data indicate that extant Pocillopora species diversified from a common ancestral lineage within the last ~3 million years. Key to this evolutionary success story may be the high phenotypic plasticity exhibited by Pocillopora species.


Assuntos
Antozoários/genética , Biodiversidade , Genômica , Animais , Teorema de Bayes , Genoma Mitocondrial , Funções Verossimilhança , Fases de Leitura Aberta/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA