Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220458

RESUMO

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Assuntos
Nefrite Intersticial/virologia , Parvovirus/isolamento & purificação , Parvovirus/patogenicidade , Animais , Austrália , Progressão da Doença , Feminino , Fibrose/patologia , Fibrose/virologia , Humanos , Rim/metabolismo , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/fisiopatologia , América do Norte , Infecções por Parvoviridae/metabolismo
2.
Blood ; 141(11): 1316-1321, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36493342

RESUMO

Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are clonal disorders driven by progressively acquired somatic mutations in hematopoietic stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS and CMML. Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated HSCs. However, in patients with established disease it is unclear whether (1) HSCs with multiple mutations progress through differentiation with comparable frequency to their less mutated counterparts or (2) improvements in peripheral blood counts following HMA therapy are driven by residual wild-type HSCs or by clones with particular combinations of mutations. To address these questions, the somatic mutations of individual stem cells, progenitors (common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutrophils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-cell genotyping, followed by bulk analysis in immature and mature cells before and after AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.


Assuntos
Leucemia Mielomonocítica Crônica , Síndromes Mielodisplásicas , Humanos , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Células-Tronco Hematopoéticas/metabolismo , Monócitos , Células Clonais
3.
PLoS Pathog ; 16(1): e1008262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971979

RESUMO

Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify "p10" and "p15" as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic.


Assuntos
Rim/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirinae/fisiologia , Doenças dos Roedores/virologia , Proteínas Virais/metabolismo , Tropismo Viral , Animais , Humanos , Camundongos , Parvovirinae/genética , Proteínas Virais/genética
4.
BMC Cancer ; 22(1): 976, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096767

RESUMO

BACKGROUND: Fatty acid synthase (FASN) expression is associated with a more aggressive breast cancer phenotype and is regulated downstream of receptor tyrosine kinase (RTK) signaling pathways. Recently, post transcriptional regulation of lipogenic transcripts have been demonstrated as being mediated downstream of serine-arginine rich protein kinase 2 (SRPK2), which acts to phosphorylate serine-arginine rich splicing factors (SRSFs), resulting in RNA binding and various RNA regulatory processes. Though post-transcriptional regulation of FASN has been studied previously, the upstream mediators of these pathways have not been elucidated. METHODS: Western blotting and RT-qPCR were utilized to demonstrate alterations in FASN and mRNA expression upon modulation of the IGF-1-mTORC1-SRPK2 pathway by small molecule inhibitors or RNAi mediated silencing. RNA stability was accessed by using the transcriptional inhibitor actinomycin-D followed by RT-qPCR. Further, we employed RNA-immunoprecipitation to demonstrate the direct binding of SRSF-1 to FASN transcripts. RESULTS: In the current study, we demonstrated an IGF-1 induced increase in FASN mRNA and protein expression that was attenuated by mTORC1 inhibition. This mTORC1 inhibition also resulted in decreases in total and nuclear p-SRPK2 in response to IGF-1 exposure. Upon SRPK2 knockdown and inhibition, we observed a decrease in FASN protein and mRNA stability, respectively, in response to IGF-1 exposure that was specific to triple negative and HER2+ breast cancer cell lines. As we explored further, IGF-1 exposure resulted in an altered localization of eGFP expressed SRSF-1, pEGFP-SRSF-1 that was rescued upon both SRPK2 knockdown and mTORC1 inhibition. Further, we observed an increase binding of SRSF-1 to FASN RNA upon IGF-1 exposure, which was abrogated by SRPK2 knockdown. CONCLUSION: These current findings establish a potential IGF-1-mTORC1-SRPK2-FASN axis in breast cancer, which could be a potential therapeutic target for cancers that overexpress FASN and components of the IGF-1R pathway.


Assuntos
Fator de Crescimento Insulin-Like I , Neoplasias , Arginina , Linhagem Celular Tumoral , Ácido Graxo Sintases/metabolismo , Fator de Crescimento Insulin-Like I/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases , Proteínas Serina-Treonina Quinases , RNA , RNA Mensageiro , Serina
5.
Nutr Cancer ; 74(2): 650-659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33715540

RESUMO

Obesity is associated with low-grade chronic inflammation, and metabolic dysregulation. Evidence shows that chronic inflammation inhibits protective immunity mediated by CD4+ T cells. Additionally, obesity-induced inflammation affects prostate cancer progression. However, the effect of obesity on CD4+ T-cell- response to prostate cancer is not well understood. To investigate whether obesity induces changes in CD4+ T cell cytokine profile, cytokine expression was measured in splenic CD4+ T-cells from 10-week-old male C57Bl/6 mice exposed to conditioned media (CM) from macrophages grown in sera from obese subjects. Additionally, expression levels of key regulators of Epithelial-Mesenchymal Transition (EMT) were measure in prostate cancer epithelial cells exposed to conditioned media from obesity-modified T-cells. Cell migration and invasion was measured in prostate cancer epithelial cells exposed to CM from obesity-modified CD4+ T-cells. Obesity suppressed the expression of IFNγ and IL-2 in CD4+ T-cells but up-regulated the expression of IL-6. Prostate epithelial cancer cells exposed to conditioned media from obesity-modified T cell increased the expression of EMT markers and showed a higher invasive and migratory capacity.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Linfócitos T CD4-Positivos , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Humanos , Masculino , Camundongos , Obesidade/complicações , Fenótipo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo
6.
Vet Pathol ; 59(1): 120-126, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601998

RESUMO

Chronic kidney disease (CKD) is a common cause of morbidity and mortality in domestic cats, but the cause is still largely elusive. While some viruses have been associated with this disease, none have been definitively implicated as causative. Recently, Rodent chaphamaparvovirus 1 was recognized as the cause of murine inclusion body nephropathy, a disease reported for over 40 years in laboratory mice. A novel virus belonging to the same genus, Carnivore chaphamaparvovirus 2, was recently identified in the feces of cats with diarrhea. The goal of this study was to investigate the possible role of chaphamaparvoviruses including members of Rodent chaphamaparvovirus 1 and Carnivore chaphamaparvovirus 2 in the development of feline CKD. The presence of these viruses was retrospectively investigated in formalin-fixed paraffin-embedded feline kidney samples using polymerase chain reaction, in situ hybridization, and immunohistochemistry. Cats were divided into 3 groups: normal (N = 24), CKD (N = 26), and immunocompromised (N = 25). None of the kidney tissues from any of the 75 cats revealed the presence of chaphamaparvovirus DNA, RNA, or antigen. We conclude that viruses belonging to the chaphamaparvovirus genus are unlikely to contribute to the occurrence of feline CKD.


Assuntos
Doenças do Gato , Ácidos Nucleicos , Insuficiência Renal Crônica , Doenças dos Roedores , Animais , Gatos , Rim , Camundongos , Reação em Cadeia da Polimerase/veterinária , Insuficiência Renal Crônica/veterinária , Estudos Retrospectivos
7.
Immunity ; 37(5): 893-904, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23142780

RESUMO

Secondary diversification of the B cell repertoire by immunoglobulin gene somatic hypermutation in the germinal center (GC) is essential for providing the high-affinity antibody specificities required for long-term humoral immunity. While the risk to self-tolerance posed by inadvertent generation of self-reactive GC B cells has long been recognized, it has not previously been possible to identify such cells and study their fate. In the current study, self-reactive B cells generated de novo in the GC failed to survive when their target self-antigen was either expressed ubiquitously or specifically in cells proximal to the GC microenvironment. By contrast, GC B cells that recognized rare or tissue-specific self-antigens were not eliminated, and could instead undergo positive selection by cross-reactive foreign antigen and produce plasma cells secreting high-affinity autoantibodies. These findings demonstrate the incomplete nature of GC self-tolerance and may explain the frequent association of cross-reactive, organ-specific autoantibodies with postinfectious autoimmune disease.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Animais , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Autoantígenos/genética , Autoantígenos/metabolismo , Linfócitos B/metabolismo , Células CHO , Linhagem Celular , Microambiente Celular/genética , Microambiente Celular/imunologia , Cricetinae , Reações Cruzadas , Genes de Imunoglobulinas , Centro Germinativo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Plasmócitos/imunologia , Plasmócitos/metabolismo , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia
8.
Proc Natl Acad Sci U S A ; 115(19): 4921-4926, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29669924

RESUMO

Activation-induced deaminase (AID) initiates hypermutation of Ig genes in activated B cells by converting C:G into U:G base pairs. G1-phase variants of uracil base excision repair (BER) and mismatch repair (MMR) then deploy translesion polymerases including REV1 and Pol η, which exacerbates mutation. dNTP paucity may contribute to hypermutation, because dNTP levels are reduced in G1 phase to inhibit viral replication. To derestrict G1-phase dNTP supply, we CRISPR-inactivated SAMHD1 (which degrades dNTPs) in germinal center B cells. Samhd1 inactivation increased B cell virus susceptibility, increased transition mutations at C:G base pairs, and substantially decreased transversion mutations at A:T and C:G base pairs in both strands. We conclude that SAMHD1's restriction of dNTP supply enhances AID's mutagenicity and that the evolution of Ig hypermutation included the repurposing of antiviral mechanisms based on dNTP starvation.


Assuntos
Linfócitos B/imunologia , Fase G1/imunologia , Ativação Linfocitária , Mutação , Proteína 1 com Domínio SAM e Domínio HD , Hipermutação Somática de Imunoglobulina/imunologia , Animais , Linfócitos B/citologia , Citidina Desaminase/imunologia , DNA Polimerase Dirigida por DNA , Fase G1/genética , Masculino , Camundongos , Camundongos Transgênicos , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/imunologia
9.
Immunol Cell Biol ; 97(1): 39-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30152893

RESUMO

Antibody-mediated immunity is highly protective against disease. The majority of current vaccines confer protection through humoral immunity, but there is high variability in responsiveness across populations. Identifying immune mechanisms that mediate low antibody responsiveness may provide potential strategies to boost vaccine efficacy. Here, we report diverse antibody responsiveness to unadjuvanted as well as adjuvanted immunization in substrains of BALB/c mice, resulting in high and low antibody response phenotypes. Furthermore, these antibody phenotypes were not affected by changes in environmental factors such as the gut microbiota composition. Antigen-specific B cells following immunization had a marked difference in capability to class switch, resulting in perturbed IgG isotype antibody production. In vitro, a B-cell intrinsic defect in the regulation of class-switch recombination was identified in mice with low IgG antibody production. Whole genome sequencing identified polymorphisms associated with the magnitude of antibody produced, and we propose candidate genes that may regulate isotype class-switching capability. This study highlights that mice sourced from different vendors can have significantly altered humoral immune response profiles, and provides a resource to interrogate genetic regulators of antibody responsiveness. Together these results further our understanding of immune heterogeneity and suggest additional research on the genetic influences of adjuvanted vaccine strategies is warranted for enhancing vaccine efficacy.


Assuntos
Formação de Anticorpos/genética , Camundongos Endogâmicos BALB C , Animais , Linfócitos B/imunologia , Switching de Imunoglobulina , Camundongos , Camundongos Endogâmicos BALB C/genética , Camundongos Endogâmicos BALB C/imunologia , Polimorfismo Genético/genética , Vacinas/imunologia , Sequenciamento Completo do Genoma
10.
Nucleic Acids Res ; 45(6): 3146-3157, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28039326

RESUMO

AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites.


Assuntos
Citidina Desaminase/metabolismo , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Mutação , Uracila-DNA Glicosidase/metabolismo , Transferência Adotiva , Animais , Pareamento de Bases , Sequência de Bases , Masculino , Camundongos Endogâmicos C57BL , Uracila/metabolismo , Uracila-DNA Glicosidase/genética
11.
Immunol Cell Biol ; 95(5): 443-453, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27899813

RESUMO

Liver fibrosis is a progressive pathological process involving inflammation and extracellular matrix deposition. Dipeptidyl peptidase 4 (DPP4), also known as CD26, is a cell surface glycoprotein and serine protease. DPP4 binds to fibronectin, can inactivate specific chemokines, incretin hormone and neuropeptides, and influences cell adhesion and migration. Such properties suggest a pro-fibrotic role for this peptidase but this hypothesis needs in vivo examination. Experimental liver injury was induced with carbon tetrachloride (CCl4) in DPP4 gene knockout (gko) mice. DPP4 gko had less liver fibrosis and inflammation and fewer B cell clusters than wild type mice in the fibrosis model. DPP4 inhibitor-treated mice also developed less liver fibrosis. DNA microarray and PCR showed that many immunoglobulin (Ig) genes and some metabolism-associated transcripts were differentially expressed in the gko strain compared with wild type. CCl4-treated DPP4 gko livers had more IgM+ and IgG+ intrahepatic lymphocytes, and fewer CD4+, IgD+ and CD21+ intrahepatic lymphocytes. These data suggest that DPP4 is pro-fibrotic in CCl4-induced liver fibrosis and that the mechanisms of DPP4 pro-fibrotic action include energy metabolism, B cells, NK cells and CD4+ cells.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Fígado/enzimologia , Fígado/lesões , Animais , Tetracloreto de Carbono , Linhagem Celular , Inibidores da Dipeptidil Peptidase IV/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Fígado/patologia , Cirrose Hepática/genética , Camundongos , Camundongos Knockout , Fenótipo , Baço/patologia , Regulação para Cima
13.
Pharm Res ; 34(6): 1224-1232, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28352993

RESUMO

PURPOSE: This study was designed to test the short-term toxicity of DHA-dFdC in a mouse model and its efficacy in a mouse model of leukemia at or below its repeat-dose maximum tolerated dose (RD-MTD). METHOD: A repeat-dose dose-ranging toxicity study was designed to determine the tolerability of DHA-dFdC when administered to DBA/2 mice by intravenous (i.v.) injection on a repeat-dose schedule (i.e. injections on days 0, 3, 7, 10, and 13). In order to determine the effect of a lethal dose of DHA-dFdC, mice were injected i.v. with three doses of DHA-dFdC at 100 mg/kg on days 0, 3, and 5 (i.e. a lethal-RD). The body weight of mice was recorded two or three times a week. At the end of the study, major organs (i.e. heart, liver, spleen, kidneys, lung, and pancreas) of mice that received the lethal-RD or RD-MTD were weighed, and blood samples were collected for analyses. Finally, DHA-dFdC was i.v. injected into DBA/2 mice with syngeneic L1210 mouse leukemia cells to evaluate its efficacy at or below RD-MTD. RESULTS: The RD-MTD of DHA-dFdC is 50 mg/kg. At 100 mg/kg, a lethal-RD, DHA-dFdC decreases the weights of mouse spleen and liver and significantly affected certain blood parameters (i.e. white blood cells, lymphocytes, eosinophils, and neutrophil segmented). At or below its RD-MTD, DHA-dFdC significantly prolonged the survival of L1210 leukemia-bearing mice. CONCLUSION: DHA-dFdC has dose-dependent toxicity, affecting mainly spleen at a lethal-RD. At or below its RD-MTD, DHA-dFdC is effective against leukemia in a mouse model.


Assuntos
Antineoplásicos/toxicidade , Desoxicitidina/análogos & derivados , Desoxicitidina/toxicidade , Leucemia L1210/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Composição de Medicamentos , Feminino , Humanos , Dose Máxima Tolerável , Camundongos Endogâmicos DBA , Gencitabina
14.
Biochim Biophys Acta ; 1842(10): 1475-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066474

RESUMO

Glycerol-3-phosphate acyltransferase-1 is the first rate limiting step in de novo glycerophospholipid synthesis. We have previously demonstrated that GPAT-1 deletion can significantly alter T cell function resulting in a T cell phenotype similar to that seen in aging. Recent studies have suggested that changes in the metabolic profile of T cells are responsible for defining specific effector functions and T cell subsets. Therefore, we determined whether T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells could be explained by changes in cellular metabolism. We show here for the first time that GPAT-1 (-/-) CD4(+) T cells exhibit several key metabolic defects. Striking decreases in both the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were observed in GPAT-1 (-/-) CD4(+) T cells following CD3/CD28 stimulation indicating an inherent cellular defect in energy production. In addition, the spare respiratory capacity (SRC) of GPAT-1 (-/-) CD4+ T cells, a key indicator of their ability to cope with mitochondrial stress was significantly decreased. We also observed a significant reduction in mitochondrial membrane potential in GPAT-1 (-/-) CD4(+) T cells compared to their WT counterparts, indicating that GPAT-1 deficiency results in altered or dysfunctional mitochondria. These data demonstrate that deletion of GPAT-1 can dramatically alter total cellular metabolism under conditions of increased energy demand. Furthermore, altered metabolic response following stimulation may be the defining mechanism underlying T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells. Taken together, these results indicate that GPAT-1 is essential for the response to the increased metabolic demands associated with T cell activation.

15.
Prostate ; 75(5): 449-62, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25560177

RESUMO

BACKGROUND: A close relationship between aging, inflammation, and prostate cancer is widely accepted. Aging is accompanied by a progressive increase in pro-inflammatory cytokines, including interleukin 17 (IL-17), a key pro-inflammatory cytokine that becomes dysregulated with age. However, the contribution of IL-17 to age-related prostate tumorigenesis remains unclear. The aim of this study was to investigate the role of age-related IL-17 dysregulation in prostate tumorigenesis. METHODS: Serum and splenic T-lymphocytes from young GPAT-1 knock-out aging-mimic T cell mice as well as young and aged wild-type mice were collected. shRNA was used to knock down the IL-17 receptor in LNCaP prostate cancer cells and RWPE-1 non-transformed prostate epithelial cells, which were then exposed to the mouse sera or conditioned media from stimulated T-lymphocytes. NF-κB activation, NF-κB target gene expression, and cell proliferation were all measured in these cells by luciferase assay, qPCR, Western blot analysis, and MTT assay, respectively. RESULTS: T-lymphocyte-secreted IL-17 from aging-mimic mice induced NF-κB activity and target gene expression in LNCaP and RWPE-1 cells. It also promoted proliferation of these cells. CONCLUSION: Aging-mimic T cell mice produce increased levels of IL-17, which stimulates the pro-inflammatory NF-κB pathway in prostate epithelial cells. NF-κB increases inflammation, carcinogenesis and metastatic potential in the prostate. These findings provide evidence that the dysregulation of cytokine production seen in aged T cells may directly contribute to the increased risk for prostate cancer in the elderly.


Assuntos
Envelhecimento/fisiologia , Interleucina-17/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores de Interleucina-17/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
16.
Oncogene ; 43(14): 1063-1074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374406

RESUMO

Flotillin-1 contributes to invasion and metastasis in triple negative breast cancer (TNBC) and is modified post-translationally through palmitoylation. Palmitoylation, the process of conjugating palmitoyl-CoA to proteins, plays an essential role in protein stability and trafficking. Thus far, there has not been any investigation into the role of flotillin-1 palmitoylation in the context of metastasis in vivo. To address the role of flotillin-1 palmitoylation in metastasis, MDA-MB-231 cells expressing palmitoylation defective flotillin-1 constructs were used as models. Compared to flotillin-1 WT expressing tumors, flotillin-1 palmitoylation defective displayed abrogated tumor progression and lung metastasis in vivo in both spontaneous and experimental models. Further mechanistic investigation led to the identification of zDHHC5 as the main palmitoyl acyltransferase responsible for palmitoylating endogenous flotillin-1. Modulation of flotillin-1 palmitoylation status through mutagenesis, zDHHC5 silencing, and 2-bromopalmitate inhibition all resulted in the proteasomal degradation of flotillin-1 protein. To assess if flotillin-1 palmitoylation can be inhibited for potential clinical relevance, we designed a competitive peptide fused to a cell penetrating peptide sequence, which displayed efficacy in blocking flotillin-1 palmitoylation in vitro without altering palmitoylation of other zDHHC5 substrates, highlighting its specificity. Additionally, TNBC xenograft tumor models expressing a doxycycline inducible flotillin-1 palmitoylation inhibiting peptide displayed attenuated tumor growth and lung metastasis. Collectively, these results reveal a novel palmitoylation dependent mechanism which is essential for the stability of flotillin-1 protein. More specifically, disruption of flotillin-1 palmitoylation through mutagenesis or competitive peptide promoted flotillin-1 protein degradation, subsequently impeding its tumor promoting and metastasis-inducing effects in TNBC tumor models.


Assuntos
Neoplasias Pulmonares , Proteínas de Membrana , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Lipoilação , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , Peptídeos , Neoplasias de Mama Triplo Negativas/genética
17.
Prostate ; 73(8): 855-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532664

RESUMO

BACKGROUND: The primary risk for prostate cancer is aging, often associated with inflammation. Evidence implicates progressive age-related immune dysfunction with increased prostate cancer incidence and mortality. The aged T-cell response is characterized by increased production of pro-inflammatory cytokines, which could significantly contribute to prostate tumorigenesis through induction of key inflammation-mediated pro-survival factors. METHODS: T-cell function of the young (<6 month-old) glycerol-3-phosphate acyltransferase-1 (GPAT-1) knock-out mouse mimics many of the hallmarks observed in an aged (>22-month-old) mouse. Serum and splenic T-lymphocytes from young GPAT-1(-/-) (6 months) and aged wild type (22 months) mice were collected for in vitro studies, including a cytokine immunoarray for serum cytokine levels, luciferase assays for NF-κB activation and Western blot analyses for protein expression. RESULTS: The T-cell cytokine profile of the GPAT-1(-/-) mice mirrored that observed in aged wild type mice, including higher expression levels of IL-17. Serum- and T-cell-derived factors induced NF-κB activity in normal, non-transformed and prostate cancer epithelial cells, correlating with re-localization of NF-κB and increased protein expression of downstream targets of NF-κB. CONCLUSION: The aging and aging-mimic mice produced circulating factors that induce pro-inflammatory pathways in prostate cells, most notably NF-κB. These findings provide evidence that an aged T-cell may directly contribute to the increased risk for prostate cancer in the elderly and establish that the GPAT-1(-/-) model, which mimics many of the characteristics of an aged immune system, is a viable tool for investigating this novel area of cancer risk.


Assuntos
Envelhecimento/imunologia , Transformação Celular Neoplásica/imunologia , Glicerol-3-Fosfato O-Aciltransferase/imunologia , Inflamação/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T/imunologia , Animais , Western Blotting , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Imunoensaio , Inflamação/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Neoplasias da Próstata/enzimologia , Linfócitos T/enzimologia
18.
Sci Transl Med ; 15(696): eabm1262, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196067

RESUMO

High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Leucemia , Humanos , Anticorpos Biespecíficos/uso terapêutico , Distribuição Tecidual , Leucócitos Mononucleares , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/uso terapêutico , Polietilenoglicóis , Lipossomos , Leucemia/tratamento farmacológico
19.
Nucleic Acids Res ; 38(22): 8120-30, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20705648

RESUMO

Activation-induced cytidine deaminase (AID) protein initiates Ig gene mutation by deaminating cytosines, converting them into uracils. Excision of AID-induced uracils by uracil-N-glycosylase is responsible for most transversion mutations at G:C base pairs. On the other hand, processing of AID-induced G:U mismatches by mismatch repair factors is responsible for most mutation at Ig A:T base pairs. Why mismatch processing should be error prone is unknown. One theory proposes that long patch excision in G1-phase leads to dUTP-incorporation opposite adenines as a result of the higher G1-phase ratio of nuclear dUTP to dTTP. Subsequent base excision at the A:U base pairs produced could then create non-instructional templates leading to permanent mutations at A:T base pairs (1). This compelling theory has remained untested. We have developed a method to rapidly modify DNA repair pathways in mutating mouse B cells in vivo by transducing Ig knock-in splenic mouse B cells with GFP-tagged retroviruses, then adoptively transferring GFP(+) cells, along with appropriate antigen, into primed congenic hosts. We have used this method to show that dUTP-incorporation is unlikely to be the cause of AID-induced mutation of A:T base pairs, and instead propose that A:T mutations might arise as an indirect consequence of nucleotide paucity during AID-induced DNA repair.


Assuntos
Adenina/química , Nucleotídeos de Desoxiuracil/metabolismo , Genes de Imunoglobulinas , Mutação , Timina/química , Animais , Pareamento de Bases , Expressão Gênica , Centro Germinativo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pirofosfatases/metabolismo , Retroviridae/genética , Retroviridae/metabolismo
20.
Breast Cancer (Auckl) ; 16: 11782234221111374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035625

RESUMO

Purpose: The objective of this study is to determine the impact of exposure to obesity-related systemic factors on fatty acid synthase enzyme (FASN) expression in breast cancer cells. Methods: MCF-7 breast cancer cells were exposed to sera from patients having obesity or not having obesity and subjected to quantitative reverse transcription polymerase chain reaction (RT-qPCR). Subsequent MTT and colony-forming assays using both MCF-7 and T-47D cells exposed to sera and treated with or without FASN inhibitor, TVB-3166, were used. MCF-7 cells were then treated with insulin and the sterol regulatory element-binding protein (SREBP) processing inhibitor, betulin, prior to analysis of FASN expression by quantitative RT-qPCR and western blot. Insulin-induced SREBP-FASN promoter binding was analyzed by chromatin immunoprecipitation with an anti-SREBP antibody. Results: In response to sera exposure (body mass index [BMI] >30) there was an increase in FASN expression in breast cancer cells. Furthermore, treatment with the FASN inhibitor, TVB-3166, resulted in a decreased breast cancer cell survival and proliferation while increasing apoptosis upon sera exposure (BMI >30). Insulin-exposed MCF-7 cells exhibited an increased FASN messenger RNA and protein expression, which is abrogated upon SREBP inhibition. In addition, insulin exposure induced enhanced SREBP binding to the FASN promoter. Conclusions: Our results implicate FASN as a potential mediator of obesity-induced breast cancer aggression and a therapeutic target of patients with obesity-induced breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA