Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; 42(5): 718-737, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35078344

RESUMO

Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.


Assuntos
Encefalopatias , Rarefação Microvascular , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encefalopatias/patologia , Humanos , Imageamento por Ressonância Magnética
2.
Elife ; 92020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484440

RESUMO

Mechanical force is a determinant of Notch signalling but the mechanism of force detection and its coupling to Notch are unclear. We propose a role for Piezo1 channels, which are mechanically-activated non-selective cation channels. In cultured microvascular endothelial cells, Piezo1 channel activation by either shear stress or a chemical agonist Yoda1 activated a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), a Ca2+-regulated transmembrane sheddase that mediates S2 Notch1 cleavage. Consistent with this observation, we found Piezo1-dependent increase in the abundance of Notch1 intracellular domain (NICD) that depended on ADAM10 and the downstream S3 cleavage enzyme, γ-secretase. Conditional endothelial-specific disruption of Piezo1 in adult mice suppressed the expression of multiple Notch1 target genes in hepatic vasculature, suggesting constitutive functional importance in vivo. The data suggest that Piezo1 is a mechanism conferring force sensitivity on ADAM10 and Notch1 with downstream consequences for sustained activation of Notch1 target genes and potentially other processes.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Canais Iônicos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Estresse Mecânico , Fatores de Transcrição HES-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA