Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Phys Chem Chem Phys ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39314194

RESUMO

The simulation of chemical reactions is an anticipated application of quantum computers. Using a Diels-Alder reaction as a test case, in this study we explore the potential applications of quantum algorithms and hardware in investigating chemical reactions. Our specific goal is to calculate the activation barrier of a reaction between ethylene and cyclopentadiene forming a transition state. To achieve this goal, we use quantum algorithms for near-term quantum hardware (entanglement forging and quantum subspace expansion) and classical post-processing (many-body perturbation theory) in concert. We conduct simulations on IBM quantum hardware using up to 8 qubits, and compute accurate activation barrier in the reaction between cyclopentadiene and ethylene by accounting for both static and dynamic electronic correlation. This work illustrates a hybrid quantum-classical computational workflow to study chemical reactions on near-term quantum devices, showcasing the potential for performing quantum chemistry simulations on quantum hardware to predict activation barriers in agreement with those predicted by CASCI.

2.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949581

RESUMO

Modeling chemical reactions with quantum chemical methods is challenging when the electronic structure varies significantly throughout the reaction and when electronic excited states are involved. Multireference methods, such as complete active space self-consistent field (CASSCF), can handle these multiconfigurational situations. However, even if the size of the needed active space is affordable, in many cases, the active space does not change consistently from reactant to product, causing discontinuities in the potential energy surface. The localized active space SCF (LASSCF) is a cheaper alternative to CASSCF for strongly correlated systems with weakly correlated fragments. The method is used for the first time to study a chemical reaction, namely the bond dissociation of a mono-, di-, and triphenylsulfonium cation. LASSCF calculations generate smooth potential energy scans more easily than the corresponding, more computationally expensive CASSCF calculations while predicting similar bond dissociation energies. Our calculations suggest a homolytic bond cleavage for di- and triphenylsulfonium and a heterolytic pathway for monophenylsulfonium.

3.
J Am Chem Soc ; 144(19): 8439-8443, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35504294

RESUMO

A new organocatalyst for the ring-opening polymerization of lactones has been identified. Under the tested conditions, the anions of 2,2'-bisindole promote fast, living polymerizations (as short as 10 ms) which are selective for chain elongation over transesterification (D ≤ 1.1). While structurally related to (thio)urea anion catalysts, anions of 2,2'-bisindole activate the monomer via the counterion rather than through hydrogen bonding. This new activation motif enables modulation of the polymerization rate by 2 orders of magnitude by changing the counterion.


Assuntos
Ésteres , Lactonas , Ânions , Cátions , Polimerização
4.
J Phys Chem A ; 125(9): 1827-1836, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33635672

RESUMO

Quantum chemistry studies of biradical systems are challenging due to the required multiconfigurational nature of the wavefunction. In this work, Variational Quantum Eigensolver (VQE) is used to compute the energy profile for the lithium superoxide dimer rearrangement, involving biradical species, on quantum simulators and devices. Considering that current quantum devices can only handle limited number of qubits, we present guidelines for selecting an appropriate active space to perform computations on chemical systems that require many qubits. We show that with VQE performed with a quantum simulator reproduces results obtained with full-configuration interaction (Full CI) for the chosen active space. However, results deviate from exact values by about 39 mHa for calculations on a quantum device. This deviation can be improved to about 4 mHa using the readout mitigation approach and can be further improved to 2 mHa, approaching chemical accuracy, using the state tomography technique to purify the calculated quantum state.

5.
Chem Rev ; 118(2): 839-885, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29048888

RESUMO

The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in catalytic transformations that lower the technological barriers for developing more sustainable replacements for petroleum-based plastics.

6.
Proc Natl Acad Sci U S A ; 113(28): 7722-6, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354514

RESUMO

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.

7.
Langmuir ; 33(8): 1959-1968, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28118018

RESUMO

Polyurethanes (PUs) are considered ideal candidates for drug delivery applications due to their easy synthesis, excellent mechanical properties, and biodegradability. Unfortunately, methods for preparing well-defined PU nanoparticles required miniemulsion polymerization techniques with a nontrivial control of the polymerization conditions due to the inherent incompatibility of isocyanate-containing monomers and water. In this work, we report the preparation of soft PU nanoparticles in a one-pot process using interfacial polymerization that employs a non-isocyanate polymerization route that minimizes side reactions with water. Activated pentafluorophenyl dicarbonates were polymerized with diamines and/or triamines by interfacial polymerization in the presence of an anionic emulsifier, which afforded non-isocyanate polyurethane (NIPU) nanoparticles with sizes in the range of 200-300 nm. Notably, 5 wt % of emulsifier was required in combination with a trifunctional amine to achieve stable PU dispersions and avoid particle aggregation. The versatility of this polymerization process allows for incorporation of functional groups into the PU nanoparticles, such as carboxylic acids, which can encapsulate the chemotherapeutic doxorubicin through ionic interactions. Altogether, this waterborne synthetic method for functionalized NIPU soft nanoparticles holds great promise for the preparation of drug delivery nanocarriers.

8.
Org Biomol Chem ; 15(39): 8326-8333, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28936505

RESUMO

Thorough computational studies were performed on mechanisms and energies for the thermal trimerizations of neutral or electron-rich acetylenes used as cross-linkers in organic hard-masks for lithography applications. These studies indicate that the operative mechanism proceeds through initial cyclobutadiene formation via a biradical mechanism. Cyclobutadienes form Dewar benzenes via Diels-Alder cycloadditions, or biradical processes, or both, before producing benzenes by electrocyclic ring-opening reactions. These pathways are preferred to alternatives involving concerted trimerizations or mechanisms involving carbene intermediates.

9.
J Am Chem Soc ; 137(45): 14248-51, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26505551

RESUMO

Dynamic covalent chemistries have garnered significant attention for their potential to revolutionize technologies in the material fields (engineering, biomedical, and sensors) and synthetic design strategies as they provide access to stimuli responsiveness and adaptive behaviors. However, only a limited number of molecular motifs have been known to display this dynamic behavior under mild conditions. Here, we identified a dynamic covalent motif-thioaminals-that is produced from the reaction of hexahydrotriazines (HTs) with thiols. Furthermore, we report on the synthesis of a new family of step-growth polymers based on this motif. The condensation efficiently proceeds to quantitative yields within a short time frame and offers versatility in functional group tolerance; thus, it can be exploited to synthesize both small molecule thioaminals as well as high molecular weight polymers from the step-growth polymerization of HTs with dithiols. Careful evaluation of substituted HTs and organic thiols supported by DFT calculations led to a chemically diverse library of polymers based on this motif. Finally, dynamic substitution reactions were employed toward the facile preparation of functional oligomers and macromolecules. This dynamic covalent motif is particularly attractive for a range of applications that include material design and drug delivery due to the economic feasibility of synthesis.

10.
J Am Chem Soc ; 137(43): 13851-60, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26456146

RESUMO

Aliphatic N-substituted functional eight-membered cyclic carbonates were synthesized from N-substituted diethanolamines by intramolecular cyclization. On the basis of the N-substituent, three major subclasses of carbonate monomers were synthesized (N-aryl, N-alkyl and N-carbamate). Organocatalytic ring opening polymerization (ROP) of eight-membered cyclic carbonates was explored as a route to access narrowly dispersed polymers of predictable molecular weights. Polymerization kinetics was highly dependent on the substituent on the nitrogen atom and the catalyst used for the reaction. The use of triazabicyclodecene (TBD), instead of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), as the catalyst for the N-alkyl substituted monomers significantly enhanced the rate of polymerizations. Computational studies were performed to rationalize the observed trends for TBD catalyzed polymerizations. With the optimal organocatalyst all monomers could be polymerized generating well-defined polymers within a timespan of ≤2 h with relatively high monomer conversion (≥80%) and low molar-mass dispersity (D(M) ≤ 1.3). Both the glass transition temperatures (T(g)) and onset of degradation temperatures (T(onset)) of these polymers were found to be N-substituent dependent and were in the range of about -45 to 35 °C and 230 to 333 °C, respectively. The copolymerization of the eight membered monomers with 6-membered cyclic comonomers including commercially available l-lactide and trimethylene carbonate produced novel copolymers. The combination of inexpensive starting materials, ease of ring-closure and subsequent polymerization makes this an attractive route to functional polycarbontes.

11.
Analyst ; 140(15): 5184-9, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26035633

RESUMO

The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using 1,3,5-hexahydro-1,3,5-triazines (HTs) as chemical indicators and a low cost fluorimeter-based detection system. This method takes advantage of the inherent properties of HTs to coordinate strongly with metal ions in solution, a fundamental property that was studied using a combination of analytical tools (UV-Vis titrations, (1)H-NMR titrations and computational modeling). Based on these fundamental studies that show significant changes in the HT UV signature when a metal ion is present, HT compounds were used to prepare indicator strips that resulted in significant fluorescence changes when a metal was present. A portable and economical approach was adopted to test the concept of utilizing HTs to detect heavy metals using a fluorimeter system that consisted of a low-pressure mercury lamp, a photo-detector, a monolithic photodiode and an amplifier, which produces a voltage proportional to the magnitude of the visible fluorescence emission. Readings of the prepared HT test strips were evaluated by exposure to two different heavy metals at the safe threshold concentration described by the U.S. Environmental Protection Agency (EPA) for Cr(3+) and Ag(2+) (100 µg L(-1) and 6.25, respectively). This method of detection could be used to the presence of either metal at these threshold concentrations.

12.
J Am Chem Soc ; 135(43): 16235-41, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24083673

RESUMO

A systematic study of acid organocatalysts for the polyaddition of poly(ethylene glycol) to hexamethylene diisocyanate in solution has been performed. Among organic acids evaluated, sulfonic acids were found the most effective for urethane formations even when compared with conventional tin-based catalysts (dibutyltin dilaurate) or 1,8-diazabicyclo[5.4.0]undec-7-ene. In comparison, phosphonic and carboxylic acids showed considerably lower catalytic activities. Furthermore, sulfonic acids gave polyurethanes with higher molecular weights than was observed using traditional catalyst systems. Molecular modeling was conducted to provide mechanistic insight and supported a dual activation mechanism, whereby ternary adducts form in the presence of acid and engender both electrophilic isocyanate activation and nucleophilic alcohol activation through hydrogen bonding. Such a mechanism suggests catalytic activity is a function of not only acid strength but also inherent conjugate base electron density.

13.
J Org Chem ; 78(11): 5436-43, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23647262

RESUMO

We report investigations with the dispersion-corrected B3LYP density functional method on mechanisms and energetics for reactions of group I metal phenoxides with halobenzenes as models for polyether formation. Calculated barriers for ether formation from para-substituted fluorobenzenes are well correlated with the electron-donating or -withdrawing properties of the substituent at the para position. These trends have also been explained with the distortion/interaction energy theory model which show that the major component of the activation energy is the energy required to distort the arylfluoride reactant into the geometry that it adopts at the transition state. Resonance-stabilized aryl anion intermediates (Meisenheimer complexes) are predicted to be energetically disfavored in reactions involving fluorobenzenes with a single electron-withdrawing group at the para position of the arene, but are formed when the fluorobenzenes are very electron-deficient, or when chelating substituents at the ortho position of the aryl ring are capable of binding with the metal cation, or both. Our results suggest that the presence of the metal cation does not increase the rate of reaction, but plays an important role in these reactions by binding the fluoride or nitrite leaving group and facilitating displacement. We have found that the barrier to reaction decreases as the size of the metal cation increases among a series of group I metal phenoxides due to the fact that the phenoxide becomes less distorted in the transition state as the size of the metal increases.


Assuntos
Éteres/síntese química , Teoria Quântica , Fluoreto de Sódio/química , Catálise , Éteres/química , Estrutura Molecular
14.
Chem Sci ; 14(11): 2915-2927, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937596

RESUMO

The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamical electronic structure of the H3S+ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we generalize a qubit reduction technique termed entanglement forging or EF [A. Eddins et al., Phys. Rev. X Quantum, 2022, 3, 010309], currently restricted to the evaluation of ground-state energies, to the treatment of molecular properties. While in a conventional quantum simulation a qubit represents a spin-orbital, within EF a qubit represents a spatial orbital, reducing the number of required qubits by half. We combine the generalized EF with quantum subspace expansion [W. Colless et al., Phys. Rev. X, 2018, 8, 011021], a technique used to project the time-independent Schrodinger equation for ground- and excited-states in a subspace. To enable experimental demonstration of this algorithmic workflow, we deploy a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. This study is an important step towards the computational description of photo-dissociation on near-term quantum devices, as it can be generalized to other photodissociation processes and naturally extended in different ways to achieve more realistic simulations.

15.
J Phys Chem A ; 116(51): 12389-98, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23241219

RESUMO

We describe investigations with B3LYP density functional theory to probe mechanisms for the organocatalyzed depolymerization of poly(ethylene) terephthalate (PET) into ester and amide products. These investigations utilize model systems involving the trans-esterification and amidation of methylbenzoate (MB) with ethylene glycol (EG), ethylenediamine (EDA), and ethanolamine (EA) organocatalyzed by 1,5,7-triazabicyclododecene (TBD) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Mechanisms for reactions in which TBD acts as the lone catalyst have been compared with pathways in which TBD and DBU catalyze these processes with an additional molecule of the amine or alcohol acting as a cocatalyst. Calculations suggest that the combination of an organocatalyst with a molecule of an alcohol or amine cocatalyst is slightly more activating than a lone catalyst. Our results predict that nucleophilic attack is the rate-determining step in reactions involving EDA and EG and that TBD is a better catalyst than DBU in the amidation of MB with EDA; in addition, both organocatalysts activate alcohols more than amines during nucleophilic attack. Amidation and trans-esterification possess similar barriers for reactions involving EA; but the amide, which is the thermodynamic product, is preferentially formed instead of the ester.

16.
J Am Chem Soc ; 132(17): 6205-13, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20387898

RESUMO

Computational investigations of ligand-directed selectivities in Ullmann-type coupling reactions of methanol and methylamine with iodobenzene by beta-diketone- and 1,10-phenanthroline-ligated Cu(I) complexes are reported. Density functional theory calculations using several functionals were performed on both the nucleophile formation and aryl halide activation steps of these reactions. The origin of ligand-directed selectivities in N- versus O-arylation reactions as described in a previous publication (J. Am. Chem. Soc. 2007, 129, 3490-3491) were studied and explained. The selectivities observed experimentally are derived not from initial Cu(I)(nucleophile) complex formation but from the subsequent steps involving aryl halide activation. The arylation may occur via single-electron transfer (SET) or iodine atom transfer (IAT), depending on the electron-donating abilities of the ligand and nucleophile. Mechanisms involving either oxidative addition/reductive elimination or sigma-bond metathesis are disfavored. SET mechanisms are favored in reactions promoted by the beta-diketone ligand; N-arylation is predicted to be favored in these cases, in agreement with experimental results. The phenanthroline ligand promotes O-arylation reactions via IAT mechanisms in preference to N-arylation reactions, which occur via SET mechanisms; this result is also in agreement with experimental results.


Assuntos
Cobre/química , Iodobenzenos/química , Metanol/química , Metilaminas/química , Fenantrolinas/química , Catálise , Simulação por Computador , Ligantes , Modelos Químicos
17.
J Am Chem Soc ; 132(32): 11278-87, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698695

RESUMO

We report efficient syntheses of axially chiral biaryl amides in yields ranging from 80-92%, and with enantioselectivity in the range 88-94% ee employing an asymmetric Suzuki-Miyaura process with Pd(OAc)(2) and KenPhos as ligand. These studies demonstrate that electron-rich and electron-deficient o-halobenzamides can be efficiently coupled with 2-methyl-1-naphthylboronic acid and 2-ethoxy-1-naphthylboronic acid. The yields and selectivities of the reactions are independent of the nature of halogen substituent on the benzamide coupling partner. Our investigations demonstrate that axially chiral heterocyclic and biphenyl compounds can also be synthesized with this methodology. We also report computational studies used to determine the origin of stereoselectivity during the selectivity-determining reductive elimination step of the related coupling of tolyl boronic acid with naphthylphosphonate bromide that was reported in a previous publication (J. Am. Chem. Soc. 2000, 122, 12051-12052). These studies indicate that the stereoselectivity arises from a combination of weak -(C)H..O interactions as well as steric interactions between the tolyl and naphthylphosphonate addends in the transition state for C-C coupling.


Assuntos
Hidrocarbonetos Aromáticos/química , Paládio/química , Teoria Quântica , Catálise , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Especificidade por Substrato , Termodinâmica
18.
J Am Chem Soc ; 131(23): 8121-33, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19459632

RESUMO

The transition states and activation barriers of the 1,3-dipolar cycloadditions of azides with cycloalkynes and cycloalkenes were explored using B3LYP density functional theory (DFT) and spin component scaled SCS-MP2 methods. A survey of benzyl azide cycloadditions to substituted cyclooctynes (OMe, Cl, F, CN) showed that fluorine substitution has the most dramatic effect on reactivity. Azide cycloadditions to 3-substituted cyclooctynes prefer 1,5-addition regiochemistry in the gas phase, but CPCM solvation abolishes the regioselectivity preference, in accord with experiments in solution. The activation energies for phenyl azide addition to cycloalkynes decrease considerably as the ring size is decreased (cyclononyne DeltaG(double dagger) = 29.2 kcal/mol, cyclohexyne DeltaG(double dagger) = 14.1 kcal/mol). The origin of this trend is explained by the distortion/interaction model. Cycloalkynes are predicted to be significantly more reactive dipolarophiles than cycloalkenes. The activation barriers for the cycloadditions of phenyl azide and picryl azide (2,4,6-trinitrophenyl azide) to five- through nine-membered cycloalkenes were also studied and compared to experiment. Picryl azide has considerably lower activation barriers than phenyl azide. Dissection of the transition state energies into distortion and interaction energies revealed that "strain-promoted" cycloalkyne and cycloalkene cycloaddition transition states must still pay an energetic penalty to achieve their transition state geometries, and the differences in reactivity are more closely related to differences in distortion energies than the amount of strain released in the product. Trans-cycloalkene dipolarophiles have much lower barriers than cis-cycloalkenes.


Assuntos
Alcenos/química , Alcinos/química , Azidas/química , Simulação por Computador , Modelos Químicos , Ciclização
19.
Org Lett ; 10(8): 1633-6, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18363405

RESUMO

Density functional theory (B3LYP) calculations on the transition states for the Huisgen 1,3-dipolar cycloadditions of phenyl azide with acetylene, cyclooctyne, and difluorocyclooctyne are reported. The low activation energy of the cyclooctyne "strain-promoted" cycloaddition (DeltaE = 8.0) compared to the strain-free acetylene cycloaddition (DeltaE = 16.2) is due to decreased distortion energy (DeltaEd) of cyclooctyne (DeltaDeltaEd = 4.6) and phenyl azide (DeltaDeltaEd = 4.5) to achieve that cycloaddition transition state. Electronegative fluorine substituents on cyclooctyne further increase the rate of cycloaddition by increasing interaction energies.

20.
Nat Commun ; 8(1): 1553, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133869

RESUMO

A correction to this article has been published and is linked from the HTML version of this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA