Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 222(10): 1681-1691, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32687161

RESUMO

BACKGROUND: A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7-month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations. METHODS: A total of 130 participants were randomized into 5 groups. Four groups received 3 doses of RTS,S/AS01B or RTS,S/AS01E on a 0-1-7-month schedule, with the final 1 or 2 doses being fractional (one-fifth dose volume). One group received 1 full (month 0) and 1 fractional (month 7) dose of RTS,S/AS01E. Immunized and unvaccinated control participants underwent Plasmodium falciparum-infected mosquito challenge (controlled human malaria infection) 3 months after immunization, a timing chosen to potentially discriminate VEs between groups. RESULTS: The VE of 3-dose formulations ranged from 55% (95% confidence interval, 27%-72%) to 76% (48%-89%). Groups administered equivalent formulations of RTS,S/AS01E and RTS,S/AS01B demonstrated comparable VE. The 2-dose group demonstrated lower VE (29% [95% confidence interval, 6%-46%]). All regimens were well tolerated and immunogenic, with trends toward higher anti-circumsporozoite antibody titers in participants protected against infection. CONCLUSIONS: RTS,S/AS01E can provide VE comparable to an equivalent RTS,S/AS01B regimen in adults, suggesting a universal formulation may be considered. Results also suggest that the 2-dose regimen is inferior to the 3-dose regimens evaluated. CLINICAL TRIAL REGISTRATION: NCT03162614.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/prevenção & controle , Adolescente , Adulto , Feminino , Humanos , Esquemas de Imunização , Controle de Infecções , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Vacinação , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 114(9): 2425-2430, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193898

RESUMO

RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anticorpos Antiprotozoários/biossíntese , Imunidade Inata/efeitos dos fármacos , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Proteínas de Protozoários/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Adenoviridae/genética , Adenoviridae/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Humanos , Imunização Secundária/métodos , Imunogenicidade da Vacina , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinação/métodos
3.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296848

RESUMO

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Assuntos
Esquemas de Imunização , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Leves de Imunoglobulina/biossíntese , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Malar J ; 15: 301, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245446

RESUMO

BACKGROUND: Recent vaccine studies have shown that the magnitude of an antibody response is often insufficient to explain efficacy, suggesting that characteristics regarding the quality of the antibody response, such as its fine specificity and functional activity, may play a major role in protection. Previous studies of the lead malaria vaccine candidate, RTS,S, have shown that circumsporozoite protein (CSP)-specific antibodies and CD4(+) T cell responses are associated with protection, however the role of fine specificity and biological function of CSP-specific antibodies remains to be elucidated. Here, the relationship between fine specificity, opsonization-dependent phagocytic activity and protection in RTS,S-induced antibodies is explored. METHODS: A new method for measuring the phagocytic activity mediated by CSP-specific antibodies in THP-1 cells is presented and applied to samples from a recently completed phase 2 RTS,S/AS01 clinical trial. The fine specificity of the antibody response was assessed using ELISA against three antigen constructs of CSP: the central repeat region, the C-terminal domain and the full-length protein. A multi-parameter analysis of phagocytic activity and fine-specificity data was carried out to identify potential correlates of protection in RTS,S. RESULTS: Results from the newly developed assay revealed that serum samples from RTS,S recipients displayed a wide range of robust and repeatable phagocytic activity. Phagocytic activity was correlated with full-length CSP and C-terminal specific antibody titres, but not to repeat region antibody titres, suggesting that phagocytic activity is primarily driven by C-terminal antibodies. Although no significant difference in overall phagocytic activity was observed with respect to protection, phagocytic activity expressed as 'opsonization index', a relative measure that normalizes phagocytic activity with CS antibody titres, was found to be significantly lower in protected subjects than non-protected subjects. CONCLUSIONS: Opsonization index was identified as a surrogate marker of protection induced by the RTS,S/AS01 vaccine and determined how antibody fine specificity is linked to opsonization activity. These findings suggest that the role of opsonization in protection in the RTS,S vaccine may be more complex than previously thought, and demonstrate how integrating multiple immune measures can provide insight into underlying mechanisms of immunity and protection.


Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas Opsonizantes/sangue , Fagocitose , Vacinas Sintéticas/imunologia , Linhagem Celular , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Sintéticas/administração & dosagem
5.
Malar J ; 15(1): 543, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825382

RESUMO

BACKGROUND: The malaria vaccine candidate RTS,S/AS01 (GSK Vaccines) induces high IgG concentration against the circumsporozoite protein (CSP) of Plasmodium falciparum. In human vaccine recipients circulating anti-CSP antibody concentrations are associated with protection against infection but appear not to be the correlate of protection. However, in a humanized mouse model of malaria infection prophylactic administration of a human monoclonal antibody (MAL1C), derived from a RTS,S/AS01-immunized volunteer, directed against the CSP repeat region, conveyed full protection in a dose-dependent manner suggesting that antibodies alone are able to prevent P. falciparum infection when present in sufficiently high concentrations. A competition ELISA was developed to measure the presence of MAL1C-like antibodies in polyclonal sera from RTS,S/AS01 vaccine recipients and study their possible contribution to protection against infection. RESULTS: MAL1C-like antibodies present in polyclonal vaccine-induced sera were evaluated for their ability to compete with biotinylated monoclonal antibody MAL1C for binding sites on the capture antigen consisting of the recombinant protein encompassing 32 NANP repeats of CSP (R32LR). Serum samples were taken at different time points from participants in two RTS,S/AS01 vaccine studies (NCT01366534 and NCT01857869). Vaccine-induced protection status of the study participants was determined based on the outcome of experimental challenge with infected mosquito bites after vaccination. Optimal conditions were established to reliably detect MAL1C-like antibodies in polyclonal sera. Polyclonal anti-CSP antibodies and MAL1C-like antibody content were measured in 276 serum samples from RTS,S/AS01 vaccine recipients using the standard ELISA and MAL-1C competition ELISA, respectively. A strong correlation was observed between the results from these assays. However, no correlation was found between the results of either assay and protection against infection. CONCLUSIONS: The competition ELISA to measure MAL1C-like antibodies in polyclonal sera from RTS,S/AS01 vaccine recipients was robust and reliable but did not reveal the elusive correlate of protection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/sangue , Formação de Anticorpos , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Vacinas Antimaláricas/imunologia , Proteínas de Protozoários/imunologia , Vacinas Sintéticas/imunologia , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Feminino , Voluntários Saudáveis , Humanos , Vacinas Antimaláricas/administração & dosagem , Masculino , Camundongos , Pessoa de Meia-Idade , Vacinas Sintéticas/administração & dosagem , Adulto Jovem
6.
BMC Immunol ; 16: 63, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26493839

RESUMO

BACKGROUND: Requisites for an efficacious tuberculosis (TB) vaccine are a minimal genomic diversity among infectious Mycobacterium tuberculosis strains for the selected antigen, and the capability to induce robust T-cell responses in the majority of human populations. A tool in the identification of putative T-cell epitopes is in silico prediction of major histocompatibility complex (MHC)-peptide binding. Candidate TB vaccine antigen Mtb72F and its successor M72 are recombinant fusion proteins derived from Mtb32A and Mtb39A (encoded by Rv0125 and Rv1196, respectively). Adjuvanted Mtb72F and M72 candidate vaccines were shown to induce CD4(+) T-cell responses in European, US, African and Asian populations. METHODS: Sequence conservation of Mtb32A, Mtb39A, Mtb72F and M72 among 46 strains (prevalent Mycobacterium strains causing human TB disease, and H37Ra) was assessed by multiple alignments using ClustalX. For Mtb32A, Mtb39A and Mtb72F, 15-mer human leukocyte antigen (HLA)-class II-binding peptides were predicted for 158 DRB1 alleles prevailing in populations with high TB burden, 6 DRB3/4/5, 8 DQ and 6 DP alleles, using NetMHCII-pan-3.0. Results for 3 DRB1 alleles were compared with previously published allele-matched in vitro binding data. Additional analyses were done for M72. Nonameric MHC class I-binding peptides in Mtb72F were predicted for three alleles representative of class I supertypes A02, A03 and B07, using seven prediction algorithms. RESULTS: Sequence identity among strains was ≥98 % for each protein. Residue changes in Mtb39A comprised primarily single residue or nucleotide insertions and/or deletions in repeat regions, and were observed in 67 % of strains. For Mtb72F, 156 DRB1, 6 DRB3/4/5, 7 DQ and 5 DP alleles were predicted to contain at least one MHC class II-binding peptide, and class I-binding peptides were predicted for each HLA-A/B allele. Comparison of predicted MHC-II-binding peptides with experimental data indicated that the algorithm's sensitivity and specificity were variable among alleles. CONCLUSIONS: The sequences from which Mtb72F and M72 are derived are highly conserved among representative Mycobacterium strains. Predicted putative T-cell epitopes in M72 and/or Mtb72F covered a wide array of HLA alleles. In silico binding predictions for class I- and II-binding putative epitopes can be complemented with biochemical verification of HLA binding capacity, processing and immunogenicity of the predicted peptides.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígenos HLA/química , Antígenos HLA/imunologia , Peptídeos/imunologia , Vacinas contra a Tuberculose/imunologia , Alelos , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Sequência Conservada , Epitopos de Linfócito T/metabolismo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Cadeias HLA-DRB1/química , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Cadeias HLA-DRB1/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Mycobacterium/genética , Mycobacterium/imunologia , Peptídeos/química , Ligação Proteica , Tuberculose/imunologia , Tuberculose/prevenção & controle
7.
Malar J ; 14: 72, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25885325

RESUMO

BACKGROUND: The malaria vaccine RTS,S induces antibodies against the Plasmodium falciparum circumsporozoite protein (CSP) and the concentration of Immunoglobulin G (IgG) against the repeat region of CSP following vaccination is associated with protection from P. falciparum malaria. So far, only the quantity of anti-CSP IgG has been measured and used to predict vaccination success, although quality (measured as avidity) of the antigen-antibody interaction shall be important since only a few sporozoites circulate for a short time after an infectious mosquito bite, likely requiring fast and strong binding. METHODS: Quantity and avidity of anti-CSP IgG in African infants who received RTS,S/AS01E in a 0-1-2-month or a 0-1-7-month schedule in a phase 2 clinical trial were measured by enzyme-linked immunosorbent assay. Antibody avidity was defined as the proportion of IgG able to bind in the presence of a chaotropic agent (avidity index). The effect of CSP-specific IgG concentration and avidity on protective efficacy was modelled using Cox proportional hazards. RESULTS: After the third dose, quantity and avidity were similar between the two vaccination schedules. IgG avidity after the last vaccine injection was not associated with protection, whereas the change in avidity following second and third RTS,S/AS01E injection was associated with a 54% risk reduction of getting malaria (hazard ratio: 0.46; 95% confidence interval (CI): 0.22-0.99) in those participants with a change in avidity above the median. The change in anti-CSP IgG concentration following second and third injection was associated with a 77% risk reduction of getting malaria (hazard ratio: 0.23, 95% CI: 0.11-0.51). CONCLUSIONS: Change in IgG response between vaccine doses merits further evaluation as a surrogate marker for RTS,S efficacy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT00436007 .


Assuntos
Esquemas de Imunização , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Proteínas de Protozoários/imunologia , Afinidade de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Estimativa de Kaplan-Meier , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia
8.
Malar J ; 13: 263, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25007730

RESUMO

BACKGROUND: The circumsporozoite protein (CS protein) on the malaria parasites in mosquitoes plays an important role in sporogony in mosquitoes. The RTS,S/AS01 malaria vaccine candidate, which has shown significant efficacy against clinical malaria in a large Phase 3 trial, targets the Plasmodium falciparum CS protein, but the ability of serum from vaccinated individuals to inhibit sporogony in mosquitoes has not been evaluated. METHODS: Previously a double-blind, randomized trial of RTS,S/AS01 vaccine, as compared with rabies vaccine, in five- to 17-month old children in Tanzania was conducted. In this study, polyclonal human antibodies were purified from the pools of sera taken one month after the third vaccination. IgGs were purified from four pools of sera from 25 RTS,S/AS01 vaccinated children each, and two pools of sera from 25 children vaccinated with rabies vaccine each. The ability of antibodies to inhibit P. falciparum oocyst formation and/or sporogony in the mosquito host was evaluated by a standard membrane-feeding assay. The test antibodies were fed on day 0 (at the same time as the gametocyte feed), or on days 3 or 6 (serial-feed experiments). The oocyst and sporozoite counts were performed on days 8 and 16, respectively. In addition, two human anti-CS monoclonal antibodies (mAb) and a control mAb were also evaluated. RESULTS: Polyclonal anti-CS IgG preparations from RTS,S-vaccinated children tested at concentrations of 149-210 ELISA units (EU)/ml did not show significant inhibition in oocyst and sporozoite formation when the antibodies were fed with gametocytes at the same time, or later (serial-feed experiments). Similarly, anti-CS mAbs tested at 6,421 or 7,122 EU/ml did not show reduction in oocyst and sporozoite formation. CONCLUSIONS: This study does not support the concept that anti-CS antibodies induced by the RTS,S/AS01 vaccines in humans noticeably reduce malaria transmission by blocking P. falciparum sporozoite development or salivary gland invasion in mosquitoes when taken up during feeding.


Assuntos
Anticorpos Antiprotozoários/imunologia , Culicidae/parasitologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/imunologia , Vacinas Sintéticas/imunologia , Animais , Sangue/imunologia , Culicidae/efeitos dos fármacos , Feminino , Humanos , Imunoglobulina G/imunologia , Lactente , Masculino , Carga Parasitária , Plasmodium falciparum/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Esporos de Protozoários/efeitos dos fármacos , Tanzânia
9.
Nat Med ; 30(1): 117-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38167935

RESUMO

Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria. Here we characterize the circulating B cell repertoires of 45 RTS,S/AS01 vaccinees and discover monoclonal antibodies for development as potential therapeutics. We generated >28,000 antibody sequences and tested 481 antibodies for binding activity and 125 antibodies for antimalaria activity in vivo. Through these analyses we identified correlations suggesting that sequences in Plasmodium falciparum circumsporozoite protein, the target antigen in RTS,S/AS01, may induce immunodominant antibody responses that limit more protective, but subdominant, responses. Using binding studies, mouse malaria models, biomanufacturing assessments and protein stability assays, we selected AB-000224 and AB-007088 for advancement as a clinical lead and backup. We engineered the variable domains (Fv) of both antibodies to enable low-cost manufacturing at scale for distribution to pediatric populations, in alignment with WHO's preferred product guidelines. The engineered clone with the optimal manufacturing and drug property profile, MAM01, was advanced into clinical development.


Assuntos
Anticorpos Monoclonais , Malária , Animais , Pré-Escolar , Humanos , Lactente , Camundongos , Anticorpos Monoclonais/uso terapêutico , Linfócitos B , Malária/prevenção & controle , Vacinas Antimaláricas
10.
J Clin Immunol ; 33(8): 1360-75, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24142232

RESUMO

PURPOSE: In this dose-finding Phase II study (NCT00621322), we evaluated the safety and immunogenicity of different formulations of the candidate tuberculosis vaccine containing the M72 antigen (10/20/40 µg doses) and the liposome-based AS01 Adjuvant System. We aimed to select the lowest-dose combination of M72 and AS01 that was clinically well tolerated with immunogenicity comparable to that of the previously tested M72/AS01B (40 µg) candidate vaccine. METHODS: Healthy PPD-positive (induration 3-10 mm) adults (18-45 years) in The Philippines were randomized (4:4:4:4:1:1) to receive 2 injections, 1 month apart, of M72/AS01B (40 µg), M72/AS01E (10 µg), M72/AS01E (20 µg), M72/AS02D (10 µg), M72/Saline (40 µg) or AS01B alone, and were followed up for 6 months. AS01E and AS02D contain half the quantities of the immunostimulants present in AS01B. AS02D is an oil-in-water emulsion. Vaccine selection was based on the CD4(+) T-cell responses at 1 month post vaccination. RESULTS: All formulations had a clinically acceptable safety profile with no vaccine-related serious adverse events reported. Two vaccinations of each adjuvanted M72 vaccine induced M72-specific CD4(+) T-cell and humoral responses persisting at 6 months post vaccination. No responses were observed with AS01B alone. One month post second vaccination, CD4(+) T-cell responses induced by each of the three M72/AS01 vaccine formulations were of comparable magnitudes, and all were significantly higher than those induced by M72/AS02D (10 µg) and M72/Saline. CONCLUSIONS: The formulation with the lowest antigen and adjuvant dose, M72/AS01E (10 µg), fulfilled our pre-defined selection criteria and has been selected for further clinical development.


Assuntos
Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Adulto , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Relação Dose-Resposta Imunológica , Combinação de Medicamentos , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Vacinas contra a Tuberculose/efeitos adversos , Adulto Jovem
11.
Front Immunol ; 14: 1049673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875126

RESUMO

Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response.


Assuntos
Anticorpos Monoclonais , Imunidade Humoral , Humanos , Afinidade de Anticorpos , Epitopos
12.
Malar J ; 11: 384, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23173602

RESUMO

BACKGROUND: Several pre-erythrocytic malaria vaccines based on the circumsporozoite protein (CSP) antigen of Plasmodium falciparum are in clinical development. Vaccine immunogenicity is commonly evaluated by the determination of anti-CSP antibody levels using IgG-based assays, but no standard assay is available to allow comparison of the different vaccines. METHODS: The validation of an anti-CSP repeat region enzyme-linked immunosorbent assay (ELISA) is described. This assay is based on the binding of serum antibodies to R32LR, a recombinant protein composed of the repeat region of P. falciparum CSP. In addition to the original recombinant R32LR, an easy to purify recombinant His-tagged R32LR protein has been constructed to be used as solid phase antigen in the assay. Also, hybridoma cell lines have been generated producing human anti-R32LR monoclonal antibodies to be used as a potential inexhaustible source of anti-CSP repeats standard, instead of a reference serum. RESULTS: The anti-CSP repeats ELISA was shown to be robust, specific and linear within the analytical range, and adequately fulfilled all validation criteria as defined in the ICH guidelines. Furthermore, the coefficient of variation for repeatability and intermediate precision did not exceed 23%. Non-interference was demonstrated for R32LR-binding sera, and the assay was shown to be stable over time. CONCLUSIONS: This ELISA, specific for antibodies directed against the CSP repeat region, can be used as a standard assay for the determination of humoral immunogenicity in the development of any CSP-based P. falciparum malaria vaccine.


Assuntos
Anticorpos Antiprotozoários/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adulto , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Limite de Detecção , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
13.
Lancet Infect Dis ; 22(9): 1329-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753316

RESUMO

BACKGROUND: Controlled infection studies in malaria-naive adults suggest increased vaccine efficacy for fractional-dose versus full-dose regimens of RTS,S/AS01. We report first results of an ongoing trial assessing different fractional-dose regimens in children, in natural exposure settings. METHODS: This open-label, phase 2b, randomised controlled trial is conducted at the Malaria Research Center, Agogo, Ashanti Region (Ghana), and the Kenya Medical Research Institute and the US Centers for Disease Control and Prevention site in Siaya County (Kenya). We enrolled children aged 5-17 months without serious acute or chronic illness who had previously received three doses of diphtheria, tetanus, pertussis, and hepatitis B vaccine and at least three doses of oral polio vaccine. Children were randomly assigned (1:1:1:1:1) using a web-based randomisation system with a minimisation procedure accounting for centre to receive rabies control vaccine (M012 schedule) or two full doses of RTS,S/AS01E at month 0 and month 1, followed by either full doses at months 2 and 20 (group R012-20 [standard regimen]), full doses at months 2, 14, 26, and 38 (R012-14), fractional doses at months 2, 14, 26, and 38 (Fx012-14), or fractional doses at months 7, 20, and 32 (Fx017-20). The fractional doses were administered as one fifth (0·1 mL) of the full RTS,S dose (0·5 mL) after reconstitution. All vaccines were administered by intramuscular injection in the left deltoid. The primary outcome was occurrence of clinical malaria cases from month 2·5 until month 14 for the Fx012-14 group versus the pooled R012-14 and R012-20 groups in the per-protocol set. We assessed incremental vaccine efficacy of the Fx012-14 group versus the pooled R012-14 and R012-20 group over 12 months after dose three. Safety was assessed in all children who received at least one vaccine dose. This trial is registered with ClinicalTrials.gov, NCT03276962. FINDINGS: Between Sept 28, 2017, and Sept 25, 2018, 2157 children were enrolled, of whom 1609 were randomly assigned to a treatment group (322 to each RTS,S/AS01E group and 321 to the rabies vaccine control group). 1500 children received at least one study vaccine dose and the per-protocol set comprised 1332 children. Over 12 months after dose three, the incremental vaccine efficacy in the Fx012-14 group versus the pooled R012-14 and R12-20 groups was -21% (95% CI -57 to 7; p=0·15). Up to month 21, serious adverse events occurred in 48 (16%) of 298 children in the R012-20 group, 45 (15%) of 294 in the R012-14 group, 47 (15%) of 304 in the Fx012-14 group, 62 (20%) of 311 in the Fx017-20 group, and 71 (24%) of 293 in the control group, with no safety signals observed. INTERPRETATION: The Fx012-14 regimen was not superior to the standard regimen over 12 months after dose three. All RTS,S/AS01E regimens provided substantial, similar protection against clinical malaria, suggesting potential flexibility in the recommended dosing regimen and schedule. This, and the effect of annual boosters, will be further evaluated through 50 months of follow-up. FUNDING: GlaxoSmithKline Biologicals; PATH's Malaria Vaccine Initiative.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Vacina Antirrábica , Adulto , Criança , Gana , Humanos , Quênia
14.
J Infect Dis ; 202(7): 1076-87, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20735271

RESUMO

BACKGROUND: The RTS,S/AS01(E) malaria candidate vaccine is being developed for immunization of African infants through the Expanded Program of Immunization (EPI). METHODS: This phase 2, randomized, open, controlled trial conducted in Ghana, Tanzania, and Gabon evaluated the safety and immunogenicity of RTS,S/AS01(E) when coadministered with EPI vaccines. Five hundred eleven infants were randomized to receive RTS,S/AS01(E) at 0, 1, and 2 months (in 3 doses with diphtheria, tetanus, and whole-cell pertussis conjugate [DTPw]; hepatitis B [HepB]; Haemophilus influenzae type b [Hib]; and oral polio vaccine [OPV]), RTS,S/AS01(E) at 0, 1, and 7 months (2 doses with DTPwHepB/Hib+OPV and 1 dose with measles and yellow fever), or EPI vaccines only. RESULTS: The occurrences of serious adverse events were balanced across groups; none were vaccine-related. One child from the control group died. Mild to moderate fever and diaper dermatitis occurred more frequently in the RTS,S/AS01(E) coadministration groups. RTS,S/AS01(E) generated high anti-circumsporozoite protein and anti-hepatitis B surface antigen antibody levels. Regarding EPI vaccine responses upon coadministration when considering both immunization schedules, despite a tendency toward lower geometric mean titers to some EPI antigens, predefined noninferiority criteria were met for all EPI antigens except for polio 3 when EPI vaccines were given with RTS,S/AS01(E) at 0, 1, and 2 months. However, when antibody levels at screening were taken into account, the rates of response to polio 3 antigens were comparable between groups. CONCLUSION: RTS,S/AS01(E) integrated in the EPI showed a favorable safety and immunogenicity evaluation. Trial registration. ClinicalTrials.gov identifier: NCT00436007 . GlaxoSmithKline study ID number: 106369 (Malaria-050).


Assuntos
Imunização/métodos , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Cápsulas Bacterianas/administração & dosagem , Cápsulas Bacterianas/efeitos adversos , Cápsulas Bacterianas/imunologia , Vacina contra Difteria, Tétano e Coqueluche/administração & dosagem , Vacina contra Difteria, Tétano e Coqueluche/efeitos adversos , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Feminino , Gabão , Gana , Vacinas Anti-Haemophilus/administração & dosagem , Vacinas Anti-Haemophilus/efeitos adversos , Vacinas Anti-Haemophilus/imunologia , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/efeitos adversos , Vacinas contra Hepatite B/imunologia , Humanos , Imunização Secundária/métodos , Lactente , Vacinas Antimaláricas/administração & dosagem , Masculino , Vacina Antipólio Oral/administração & dosagem , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/imunologia , Tanzânia
15.
J Immunol Methods ; 492: 112940, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493551

RESUMO

Vaccinology is confronted with diseases for which the control of T-cell responses by the vaccine is essential. Among the assays that have been designed to assess T-cell responses, intracellular cytokine staining (ICS) combined with flow cytometry is well-suited in the frame of clinical trials. This assay can be used starting from isolated peripheral blood mononuclear cells (PBMC) or from whole blood (WB), but firm equivalence between the two sample preparation methods has yet to be established. Therefore, we compared both methods by analyzing the frequency of antigen-specific CD4+ T cells expressing at least two of four immune markers in human samples taken from two independent clinical trials (NCT00397943 and NCT00805389) with a qualified ICS assay. In the first study, M72-specific CD4+ T-cell responses were analyzed using WB-ICS and PBMC-ICS in 293 samples. Of these, 128 were double positive (value ≥ lower limit of quantification [LLOQ] with both methods), 130 were double negative and only 35 sample results were discordant, leading to an overall agreement of 88.05%. When analyzing the 128 double positive samples, it was found that the geometric mean of ratios (GMR) for paired observations was 0.98, which indicates a very good alignment between the two methods. The Deming regression fitted between the methods also showed a good correlation with an estimated slope being 1.1085. In the second study, HBsAg-specific CD4+ T-cell responses were analyzed in 371 samples. Of these, 100 were double positive, 195 were double negative and 76 sample results were discordant, leading to an overall agreement of 79.51%. The GMR for paired observations was equal to 1.20, caused by a trend for overestimation in favor of the WB samples in the very high frequencies. The estimated slope of the Deming regression was 1.3057. In conclusion, we demonstrated that WB and PBMC methods of sample collection led to statistically concordant ICS results, indicating that WB-ICS is a suitable alternative to PBMC-ICS to analyze clinical trial samples.


Assuntos
Sangue/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/análise , Manejo de Espécimes/métodos , Adolescente , Adulto , Sangue/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Estudos de Viabilidade , Feminino , Citometria de Fluxo/métodos , Voluntários Saudáveis , Vacinas contra Hepatite B/administração & dosagem , Humanos , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Vacinas contra a Tuberculose/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Adulto Jovem
16.
Med ; 2(11): 1269-1286.e9, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-35590199

RESUMO

BACKGROUND: Malaria remains a key cause of mortality in low-income countries. RTS,S/AS01 is currently the most advanced malaria vaccine, demonstrating ∼50% efficacy in controlled human malaria infection (CHMI) studies in malaria-naive adults and ∼30%-40% efficacy in field trials in African infants and children. However, a higher vaccine efficacy is desirable. METHODS: Modification of the vaccine regimen in a CHMI trial in malaria-naive individuals resulted in significant increase in protection. While three equal monthly RTS,S/AS01 doses (RRR) were used originally, the administration of a delayed third dose with 20% of the original antigen dose (RRr) resulted in ∼87% protection, linked to enhanced antibody affinity maturation. Here, we sought to identify a novel molecular basis for this higher protective efficacy using Systems Serology. FINDINGS: We demonstrate that the delayed fractional dose maintains monocyte phagocytosis and NK activation mediated by NANP6-specific antibodies, key correlates of protection for the RRR regimen. However, it is also marked by a higher breadth of C-term Fc effector functions, including enhanced phagocytosis. The RRr regimen breaches immunodominance of the humoral immune response, inducing a balanced response across the C-terminal (Pf16) and NANP region of CSP, both of which were linked to protection. CONCLUSIONS: Collectively, these data point to an unexpectedly concordant evolution in Fab avidity and expanded C-term Fc effector functions, providing novel insights into the basis for higher protection conferred by the delayed fractional dose in malaria-naive individuals. FUNDING: This research was supported by PATH's Malaria Vaccine Initiative and the MGH Research Scholars program.


Assuntos
Vacinas Antimaláricas , Malária , Adulto , Anticorpos Antiprotozoários , Afinidade de Anticorpos , Criança , Humanos , Imunidade Humoral , Lactente , Malária/prevenção & controle , Vacinas Antimaláricas/uso terapêutico
17.
NPJ Vaccines ; 6(1): 110, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462438

RESUMO

RTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens. Central repeat (NANP6) IgG1 magnitude correlated best with protection status in univariate analyses and was the most predictive for protection in a multivariate model. NANP6 IgG3 magnitude, CSP IgG1 magnitude, and total serum antibody dissociation phase area-under-the-curve for NANP6, CSP, NPNA3, and N-interface binding were also associated with protection status in the regimen adjusted univariate analysis. Identification of multiple immune response features that associate with protection status, such as antibody subclasses, fine specificity and avidity reported here may accelerate development of highly efficacious vaccines against P. falciparum.

18.
Front Big Data ; 4: 672460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212134

RESUMO

RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit-with this dataset-in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a "quality as well as quantity" hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.

19.
Elife ; 92020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32342859

RESUMO

Malaria-071, a controlled human malaria infection trial, demonstrated that administration of three doses of RTS,S/AS01 malaria vaccine given at one-month intervals was inferior to a delayed fractional dose (DFD) schedule (62.5% vs 86.7% protection, respectively). To investigate the underlying immunologic mechanism, we analyzed the B and T peripheral follicular helper cell (pTfh) responses. Here, we show that protection in both study arms was associated with early induction of functional IL-21-secreting circumsporozoite (CSP)-specific pTfh cells, together with induction of CSP-specific memory B cell responses after the second dose that persisted after the third dose. Data integration of key immunologic measures identified a subset of non-protected individuals in the standard (STD) vaccine arm who lost prior protective B cell responses after receiving the third vaccine dose. We conclude that the DFD regimen favors persistence of functional B cells after the third dose.


Assuntos
Anticorpos Antiprotozoários/imunologia , Linfócitos B/efeitos dos fármacos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/farmacologia , Malária/prevenção & controle , Linfócitos B/imunologia , Humanos , Interleucinas/imunologia , Interleucinas/metabolismo , Malária/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Tempo
20.
Vaccine ; 38(7): 1678-1689, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932137

RESUMO

BACKGROUND: Vaccines eliciting protective and persistent immune responses against multiple human immunodeficiency virus type 1 (HIV-1) clades are needed. This study evaluated the persistence of immune responses induced by an investigational, AS01-adjuvanted HIV-1 vaccine as long as 14 years after vaccination. METHODS: This phase I, open-label, descriptive, mono-centric, extension study with a single group (NCT03368053) was conducted in adults who received ≥3 doses of the clade B gp120-NefTat/AS01B vaccine candidate 14 years earlier in a previous clinical trial (NCT00434512). Binding responses of serum antibodies targeting a panel of envelope glycoproteins, including gp120, gp140 and V1V2-scaffold antigens and representative of the antigenic diversity of HIV-1, were measured by binding antibody multiplex assay (BAMA). The gp120-specific CD4+/CD8+ T-cell responses were assessed by intracellular cytokine staining assay. RESULTS: At Year 14, positive IgG binding antibody responses were detected in 15 out of the 16 antigens from the BAMA V1V2 breadth panel, with positive response rates ranging from 7.1% to 60.7%. The highest response rates were observed for clade B strain V1V2 antigens, with some level of binding antibodies against clade C strains. Anti-V1V2 IgG3 response magnitude breadth, which correlated with decreased risk of infection in a previous efficacy trial, was of limited amplitude. Response rates to the antigens from the gp120 and gp140 breadth panels ranged from 7.7% to 94.1% and from 15.4% to 96.2% at Year 14, respectively. Following stimulation with gp120 peptide pool, highly polyfunctional gp120-specific CD4+ T-cells persisted up to Year 14, with high frequencies of CD40L tumor necrosis factor alpha (TNF-α), CD40L interleukin-2 (IL-2), CD40L TNF-α IL-2 and CD40L interferon gamma (IFN-γ) TNF-α IL-2 CD4+ T-cells, but no CD8+ T-cells detected. CONCLUSIONS: Persistent antibodies binding to HIV-1 envelope glycoproteins, including the V1V2-scaffold, and gp120-specific cellular immunity were observed in volunteers vaccinated 14 years earlier with the gp120-NefTat/AS01B vaccine candidate.


Assuntos
Vacinas contra a AIDS/imunologia , Formação de Anticorpos , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV , Imunidade Celular , Adulto , Infecções por HIV/prevenção & controle , HIV-1 , Humanos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA