RESUMO
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
RESUMO
Single-atom catalysts (SACs) on hematite photoanodes are efficient cocatalysts to boost photoelectrochemical performance. They feature high atom utilization, remarkable activity, and distinct active sites. However, the specific role of SACs on hematite photoanodes is not fully understood yet: Do SACs behave as a catalytic site or as a spectator? By combining spectroscopic experiments and computer simulations, we demonstrate that single-atom iridium (sIr) catalysts on hematite (α-Fe2O3/sIr) photoanodes act as a true catalyst by trapping holes from hematite and providing active sites for the water oxidation reaction. In situ transient absorption spectroscopy showed a reduced number of holes and shortened hole lifetime in the presence of sIr. This was particularly evident on the second timescale, indicative of fast hole transfer and depletion toward water oxidation. Intensity-modulated photocurrent spectroscopy evidenced a faster hole transfer at the α-Fe2O3/sIr/electrolyte interface compared to that at bare α-Fe2O3. Density functional theory calculations revealed the mechanism for water oxidation using sIr as a catalytic center to be the preferred pathway as it displayed a lower onset potential than the Fe sites. X-ray photoelectron spectroscopy demonstrated that sIr introduced a mid-gap of 4d state, key to the fast hole transfer and hole depletion. These combined results provide new insights into the processes controlling solar water oxidation and the role of SACs in enhancing the catalytic performance of semiconductors in photo-assisted reactions.
RESUMO
This themed issue explores the different length scales and timescales that determine the physics and chemistry of a variety of key materials, explored from the perspective of a wide range of disciplines, including physics, chemistry, materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with the present part exploring glassy and amorphous systems and materials at high pressure. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
RESUMO
An optimized approach to producing lattice-matched heterointerfaces for electrocatalytic hydrogen evolution has not yet been reported. Herein, we present the synthesis of lattice-matched Mo2 C-Mo2 N heterostructures using a gradient heating epitaxial growth method. The well lattice-matched heterointerface of Mo2 C-Mo2 N generates near-zero hydrogen-adsorption free energy and facilitates water dissociation in acid and alkaline media. The lattice-matched Mo2 C-Mo2 N heterostructures have low overpotentials of 73â mV and 80â mV at 10â mA cm-2 in acid and alkaline solutions, respectively, comparable to commercial Pt/C. A novel photothermal-electrocatalytic water vapor splitting device using the lattice-matched Mo2 C-Mo2 N heterostructure as a hydrogen evolution electrocatalyst displays a competitive cell voltage for electrocatalytic water splitting.
RESUMO
Highly efficient electrocatalysts for water electrolysis are crucial to the widespread commercialization of the technology and an important step forward toward a sustainable energy future. In this study, an alternative method for boosting the electrocatalytic activity toward the oxygen evolution reaction (OER) of a well-known electrocatalyst (iridium) is presented. Iridium nanoparticles (2.1 ± 0.2 nm in diameter) functionalized with chiral molecules were found to markedly enhance the activity of the OER when compared to unfunctionalized and achiral functionalized iridium nanoparticles. At a potential of 1.55 V vs Reference Hydrogen Electrode (RHE), chiral functionalized iridium nanoparticles exhibited an average 85% enhancement in activity with respect to unfunctionalized iridium nanoparticles compared to an average 13% enhancement for the achiral functionalized iridium nanoparticle. This activity enhancement is attributed to a spin-selective electron transfer mechanism taking place on the chiral functionalized catalysts, a characteristic induced by the chirality of the ligand. This alternative path for the OER drastically reduces the production of hydrogen peroxide, which was confirmed via a colorimetric method.
RESUMO
For alkaline anion-exchange membrane electrolysers and fuel cells to become a technological reality, hydroxide-ion (OH-) conducting membranes that are flexible, robust, affording high OH- conductivity, and synthesised in a low-cost and scalable way must be developed. In this paper, we engineer a stable, self-supporting, and flexible fibre mat using a low-cost ZIF-8 metal-organic framework composited with ionic liquid tetrabutylammonium hydroxide and widely used polyacrylonitrile as polymeric backbone. We obtain mats with a high intrinsic OH- conductivity for a metal-organic framework-based material already at room temperature, without added ion-conductor polymers. This approach will contribute to the development of low-cost and tuneable ion-conducting membranes.
RESUMO
All-vanadium redox flow batteries are promising large-scale energy storage solutions to support intermittent power generation. Commercial graphite felts are among the most used materials as electrodes for these batteries due to their cheap price, high conductivity, and large surface area. However, these materials exhibit poor wettability and electrochemical activity towards vanadium redox reactions, which translates into overpotentials and lower efficiencies. Deep eutectic solvents (DES) are mixtures of Lewis acids and bases that exhibit lower melting points than their original components. Here, a DES composed of choline chloride and urea, and a DES composed of FeCl3 and NH4 Cl have been employed to modify the surface of graphite felts alongside a series of re-carbonization steps. The resulting materials were compared against pristine, thermally activated, and oxidatively activated graphite felts. Our results indicated that the treatments introduced new oxygen and nitrogen functionalities to the carbonaceous surface and increased the surface area, the degree of disorder and defects in the graphitic layers of the fibres. Cyclic voltammetry studies demonstrated higher electrochemical activity towards vanadium redox reactions and electrochemical impedance spectroscopy experiments showed the modified materials exhibited significantly lower charge transfer resistances. When tested in full cell configuration the electrode modified with the urea-based DES exhibited comparable coulombic efficiencies and superior energy storage capacity retention than the thermally oxidized felt used as benchmark, suggesting that the introduction of oxygen- and nitrogen-rich functional groups had a positive effect on the overall electrochemical performance of graphite felts.
RESUMO
A common approach for the photoelectrochemical (PEC) splitting of water relies on the application of WO3 porous electrodes sensitized with BiVO4 acting as a visible photoanode semiconductor. In this work, we propose a new architecture of photoelectrodes consisting of supported multishell nanotubes (NTs) fabricated by a soft-template approach. These NTs are formed by a concentric layered structure of indium tin oxide (ITO), WO3, and BiVO4, together with a final thin layer of cobalt phosphate (CoPi) co-catalyst. The photoelectrode manufacturing procedure is easily implementable at a large scale and successively combines the thermal evaporation of single crystalline organic nanowires (ONWs), the magnetron sputtering deposition of ITO and WO3, and the solution dripping and electrochemical deposition of, respectively, BiVO4 and CoPi, plus the annealing in air under mild conditions. The obtained NT electrodes depict a large electrochemically active surface and outperform the efficiency of equivalent planar-layered electrodes by more than one order of magnitude. A thorough electrochemical analysis of the electrodes illuminated with blue and solar lights demonstrates that the characteristics of the WO3/BiVO4 Schottky barrier heterojunction control the NT electrode efficiency, which depended on the BiVO4 outer layer thickness and the incorporation of the CoPi electrocatalyst. These results support the high potential of the proposed soft-template methodology for the large-area fabrication of highly efficient multishell ITO/WO3/BiVO4/CoPi NT electrodes for the PEC splitting of water.
RESUMO
Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollenin exine capsules (SpECs), a carbon-rich byproduct of pollen grains, composed primarily of polymerized and cross-linked lipids, to synthesize carbon-encapsulated iron nanoparticles via evaporative precipitation and pyrolytic treatments. The composition and morphology of the macroparticles were influenced by the precursor iron acetate concentration. Most significantly, the formation of crystalline phases (Fe3C, α-Fe, and graphite) detected via X-ray diffraction spectroscopy showed a critical dependence on iron loading. Significantly, the characteristic morphology and structure of the SpECs were largely preserved after high-temperature pyrolysis. Analysis of Brunauer-Emmett-Teller surface area, the D and G bands from Raman spectroscopy, and the relative ratio of the C=C to C-C bonding from high-resolution X-ray photoelectron spectroscopy suggests that porosity, surface area, and degree of graphitization were easily tuned by varying the Fe loading. A mechanism for the formation of crystalline phases and meso-porosity during the pyrolysis process is also proposed. SpEC-Fe10% proved to be highly active and selective for the reverse water-gas shift reaction at high temperatures (>600 °C).
RESUMO
We have discovered a very simple method to address the challenge associated with the low volumetric energy density of free-standing carbon nanofiber electrodes for supercapacitors by electrospinning Kraft lignin in the presence of an oxidizing salt (NaNO3) and subsequent carbonization in a reducing atmosphere. The presence of the oxidative salt decreases the diameter of the resulting carbon nanofibers doubling their packing density from 0.51 to 1.03 mg cm-2 and hence doubling the volumetric energy density. At the same time, the oxidative NaNO3 salt eletrospun and carbonized together with lignin dissolved in NaOH acts as a template to increase the microporosity, thus contributing to a good gravimetric energy density. By simply adjusting the process parameters (amount of oxidizing/reducing agent), the gravimetric and volumetric energy density of the resulting lignin free-standing carbon nanofiber electrodes can be carefully tailored to fit specific power to energy demands. The areal capacitance increased from 147 mF cm-2 in the absence of NaNO3 to 350 mF cm-2 with NaNO3 translating into a volumetric energy density increase from 949 µW h cm-3 without NaNO3 to 2245 µW h cm-3 with NaNO3. Meanwhile, the gravimetric capacitance also increased from 151 F g-1 without to 192 F g-1 with NaNO3.