Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 25(11): 2435-2447, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36197736

RESUMO

Trophic transfer of energy through marine food webs is strongly influenced by prey aggregation and its exploitation by predators. Rapid aggregation of some marine fish and crustacean forage species during wind-driven coastal upwelling has recently been discovered, motivating the hypothesis that predators of these forage species track the upwelling circulation in which prey aggregation occurs. We examine this hypothesis in the central California Current Ecosystem using integrative observations of upwelling dynamics, forage species' aggregation, and blue whale movement. Directional origins of blue whale calls repeatedly tracked upwelling plume circulation when wind-driven upwelling intensified and aggregation of forage species was heightened. Our findings illustrate a resource tracking strategy by which blue whales may maximize energy gain amid ephemeral foraging opportunities. These findings have implications for the ecology and conservation of diverse predators that are sustained by forage populations whose behaviour is responsive to episodic environmental dynamics.


Assuntos
Balaenoptera , Animais , Ecossistema , Vento , Oceanos e Mares , Cadeia Alimentar , Comportamento Predatório
2.
J Acoust Soc Am ; 152(6): 3809, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36586831

RESUMO

The ice-covered Arctic Ocean constitutes a unique underwater acoustic waveguide; it is a half-channel, upward refracting environment possessing a rough upper boundary consisting of sea ice of varying thickness. The sea ice itself is an acoustic waveguide, capable of supporting the propagation of compressional and shear waves. In particular, the ice supports compressional wave resonances created by impulsive forces on the upper surface of the ice. During ICEX20 and ICEX22, observations were made of compressional wave resonances excited by hammer drops, as well as by near-impulsive signals generated from the compression of dry snow underfoot while walking on the ice. Results demonstrate that ice thickness can be inferred from compressional wave resonances in the sea ice waveguide using signals generated by walking on the snow-covered ice. Inferred ice thickness estimates were consistent with observations made by magnetic induction and physical measurements in holes drilled through the ice. Average first- and multi-year ice thicknesses were inferred to be 1.1-1.3 m and 2.4-2.5 m, respectively.

3.
J Acoust Soc Am ; 151(4): 2429, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35461491

RESUMO

Estuaries constitute a unique waveguide for acoustic propagation. The spatiotemporally varying three-dimensional front between the seawater and the outflowing freshwater during both flood and ebb constitutes an interfacial sound speed gradient capable of supporting significant vertical and horizontal acoustic refraction. The collision of these two water masses often produces breaking waves, injecting air bubbles into the water column; the negative vertical velocities of the denser saltwater often subduct bubbles to the bottom of these shallow waveguides, filling the water column with a bubbly mixture possessing a significantly lower effective sound speed. A field experiment was carried out in the mouth of Mobile Bay, Alabama in June 2021 to characterize estuarine bubble clouds in terms of their depth-dependent plume structure, frequency-dependent sound speed and attenuation, bubble size distribution, bubble number density, and void fraction. Results demonstrate that sound speed in the bubbly liquid consistently falls below the intrinsic sound speed of bubble-free water; specifically, the bubbly liquid 1.3 m below the surface in a front in this environment possesses effective sound speeds, void fractions, and bubble number densities of approximately 750 m/s, 0.001%, and 2 × 106 bubbles/m3, respectively.

4.
J Acoust Soc Am ; 148(3): EL215, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33003850

RESUMO

Underwater acoustic and environmental measurements were made adjacent to the Monitor-Merrimac Memorial Bridge-Tunnel in the James River in Virginia during a field experiment in April 2019. The observed sound field exhibited short time-scale and tidal time-scale variability due to passing marine vessels and tidally driven currents in the estuary; most interestingly, the sound field exhibited variability on a diurnal time scale, closely correlated to the temporal distribution of vehicular traffic in the underwater tunnel. During morning and evening rush-hour traffic periods, the amplitude of the traffic-induced underwater signal exceeded 10 dB at 40 Hz. Additional physics-based modeling and direct observation are required to verify the hypothesis that the signal is associated with the traffic-induced vibration in the tunnel roadbed.

5.
JASA Express Lett ; 4(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441433

RESUMO

Mechanical properties of Arctic sea ice can be inferred by observations of in-ice propagation of compressional, shear, and flexural waves. During the 1980s, impulsive signals were generated by a lead ball or sledgehammer dropped onto the sea ice, and the inference required observation of wave speeds. During ICEX20 and ARCEX23, passive cryophone observations were made of naturally occurring compressional wave resonances. Average first-year ice thicknesses during ICEX20 and ARCEX23 were inferred to be 1.3 and 1.6 m, respectively; these are consistent with independent observations and indicate the potential for remote, autonomous monitoring of sea ice thickness.

6.
Sci Rep ; 14(1): 10308, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705881

RESUMO

Knowledge of near-bottom ocean current velocities and especially their extreme values is necessary to understand geomorphology of the seafloor and composition of benthic biological communities and quantify mechanical energy dissipation by bottom drag. Direct measurements of near-bottom currents in deep ocean remain scarce because of logistical challenges. Here, we report the results of flow velocity and pressure fluctuation measurements at three sites with depths of 2573-4443 m in the area where the Gulf Stream interacts with the New England Seamounts. Repeated episodes of unexpectedly strong near-bottom currents were observed, with the current speed at 4443 m of more than 0.40 m/s. At 2573 m, current speeds exceeded 0.20 m/s approximately 5% of the time throughout the entire eight-week measurement period. The maximum flow speeds of over 1.10 m/s recorded at this site significantly surpass the fastest previously reported directly measured current speeds at comparable or larger depths. A strong correlation is found between the noise intensity in the infrasonic band and the measured current speed. The noise intensity and the characteristic frequency increase with the increasing current speed. Machine-learning tools are employed to infer current speeds from flow-noise measurements at the site not equipped with a current meter.

7.
Biol Lett ; 9(4): 20130223, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23825085

RESUMO

Most marine mammal- strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89-127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78-106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.


Assuntos
Ecolocação , Ruído/efeitos adversos , Natação , Baleias/fisiologia , Estimulação Acústica , Animais
8.
J Acoust Soc Am ; 128(3): EL144-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20815431

RESUMO

Low-frequency sound propagating through the ocean is partly attenuated by the pH-dependent boric acid relaxation process. Thus, the uptake of increased levels of atmospheric CO(2) by seawater, leading to reduced pH, has potential to change ambient noise levels. An important question is: By how much? Here, changes in ambient noise level due to hypothetical changes in seawater pH have been calculated at three receiver locations for years 1960 and 2250. The calculations used a range dependent propagation model that was applied to realistic environments based on climatology. Model results indicate changes in noise levels less than 0.21 dB are anticipated.


Assuntos
Acústica , Simulação por Computador , Modelos Teóricos , Ruído , Água do Mar/química , Dióxido de Carbono/química , Clima , Concentração de Íons de Hidrogênio , Movimento (Física) , Oceanos e Mares , Espectrografia do Som
9.
PLoS One ; 14(9): e0222456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525231

RESUMO

This study examines the occurrence of humpback whale (Megaptera novaeangliae) song in the northeast Pacific from three years of continuous recordings off central California (36.713°N, 122.186°W). Song is prevalent in this feeding and migratory habitat, spanning nine months of the year (September-May), peaking in winter (November-January), and reaching a maximum of 86% temporal coverage (during November 2017). From the rise of song in fall through the end of peak occurrence in winter, song length increases significantly from month to month. The seasonal peak in song coincides with the seasonal trough in day length and sighting-based evidence of whales leaving Monterey Bay, consistent with seasonal migration. During the seasonal song peak, diel variation shows maximum occurrence at night (69% of the time), decreasing during dawn and dusk (52%), and further decreasing with increasing solar elevation during the day, reaching a minimum near solar noon (30%). Song occurrence increased 44% and 55% between successive years. Sighting data within the acoustic detection range of the hydrophone indicate that variation in local population density was an unlikely cause of this large interannual variation. Hydrographic data and modeling of acoustic transmission indicate that changes in neither habitat occupancy nor acoustic transmission were probable causes. Conversely, the positive interannual trend in song paralleled major ecosystem variations, including similarly large positive trends in wind-driven upwelling, primary productivity, and krill abundance. Further, the lowest song occurrence during the first year coincided with anomalously warm ocean temperatures and an extremely toxic harmful algal bloom that affected whales and other marine mammals in the region. These major ecosystem variations may have influenced the health and behavior of humpback whales during the study period.


Assuntos
Migração Animal/fisiologia , Jubarte/fisiologia , Vocalização Animal/fisiologia , Animais , California , Ecossistema , Densidade Demográfica , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA