Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(14): 8136-8146, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31185160

RESUMO

Little is known about aggregation and transport behaviors of aged biochar colloids in the terrestrial environment. This study investigated aggregation kinetics and transport of biochar colloids from aged (HNO3 treatment) and pristine pinewood biochars pyrolyzed at 300 and 600 °C (PB300 and PB600) in NaCl and CaCl2 solutions. In NaCl solutions, critical coagulation concentrations (CCCs) of aged PB300 and PB600 colloids (540 mM and 327 mM) were much greater than the CCCs of pristine biochar colloids (300 mM and 182 mM). This is likely due to substantial increase of negatively charged oxygen-containing functional groups (primarily carboxyl) on aged biochar surfaces. Intriguingly, in CaCl2 solutions the CCCs of the aged PB300 and PB600 colloids decreased to 25.2 mM and 32.1 mM from 58.6 mM and 41.7 mM for the pristine colloids, respectively. This probably resulted from greater surface charge neutralization and Ca2+ bridging for the aged biochar colloids. In salt solutions (e.g., 10 and 50 mM NaCl and 1 and 10 mM CaCl2), the aged biochar colloids showed higher mobility in porous media than the pristine biochar colloids. This study demonstrated that pristine and aged biochar colloids were stable in the solutions with environmentally relevant ionic strength, and the aging process might substantially increase their mobility in the subsurface.


Assuntos
Carvão Vegetal , Coloides , Cinética , Porosidade
2.
Environ Sci Technol ; 50(14): 7706-14, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27284608

RESUMO

Dramatic changes in molecular structure, degradation pathway, and porosity of biochar are observed at pyrolysis temperatures ranging from 250 to 550 °C when bamboo biomass is pretreated by iron-sulfate-clay slurries (iron-clay biochar), as compared to untreated bamboo biochar. Electron microscopy analysis of the biochar reveals the infusion of mineral species into the pores of the biochar and the formation of mineral nanostructures. Quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy shows that the presence of the iron clay prevents degradation of the cellulosic fraction at pyrolysis temperatures of 250 °C, whereas at higher temperatures (350-550 °C), the clay promotes biomass degradation, resulting in an increase in both the concentrations of condensed aromatic, acidic, and phenolic carbon species. The porosity of the biochar, as measured by NMR cryoporosimetry, is altered by the iron-clay pretreatment. In the presence of the clay, at lower pyrolysis temperatures, the biochar develops a higher pore volume, while at higher temperature, the presence of clay causes a reduction in the biochar pore volume. The most dramatic reduction in pore volume is observed in the kaolinite-infiltrated biochar at 550 °C, which is attributed to the blocking of the mesopores (2-50 nm pore) by the nonporous metakaolinite formed from kaolinite.


Assuntos
Carbono , Carvão Vegetal/química , Biomassa , Minerais , Estrutura Molecular , Porosidade
3.
Appl Spectrosc ; 76(3): 300-309, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35109695

RESUMO

Terra preta is a fertile anthropogenic soil found in the Amazon basin. One of the most significant differences between the terra preta and surrounding soils is that terra preta is rich in aromatic carbons. Previous infrared investigations of terra preta were reported at energies above 1000 cm-1 where many other forms of carbon also have absorption lines. No measurements have been reported below 800 cm-1, where many absorptions associated with aromatic carbons occur in the absence of aliphatic carbon lines. We employ Fourier transform infrared spectroscopy between 150 cm-1 and 500 cm-1. A comparison was made between the spectra of terra preta, several pure aromatic compounds, organic fertilizers developed to replicate terra preta and several Australian soils, some of which containing char from bushfires. The spectra in the 150-500 cm-1 range were very similar between terra preta and the organic fertilizers, while they were very different for the natural soils. These findings indicate that the content of aromatic carbons in terra preta and organic fertilizers is different than in natural soils containing the bushfire chars, but also soils produced entirely by bacterial and fungal activities. This point to the importance of the preparation conditions of the biochars, which are essential ingredients of terra preta and organic fertilizers used in this study.


Assuntos
Carbono , Solo , Austrália , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
ISME J ; 11(5): 1087-1101, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28169988

RESUMO

Biochar and mineral-enriched biochar (MEB) have been used as soil amendments to improve soil fertility, sequester carbon and mitigate greenhouse gas emissions. Such beneficial outcomes could be partially mediated by soil bacteria, however little is known about how they directly interact with biochar or MEB. We therefore analyzed the diversity and functions of bacterial communities on the surfaces of one biochar and two different MEBs after a 140-day incubation in soil. The results show that the biochar and the MEBs harbor distinct bacterial communities to the bulk soil. Communities on biochar and MEBs were dominated by a novel Gammaproteobacterium. Genome reconstruction combined with electron microscopy and high-resolution elemental analysis revealed that the bacterium generates energy from the oxidation of iron that is present on the surface. Two other bacteria belonging to the genus Thiobacillus and a novel group within the Oxalbacteraceae were enriched only on the MEBs and they had the genetic capacity for thiosulfate oxidation. All three surface-enriched bacteria also had the capacity to fix carbon dioxide, either in a potentially strictly autotrophic or mixotrophic manner. Our results show the dominance of chemolithotrophic processes on the surface of biochar and MEB that can contribute to carbon sequestration in soil.


Assuntos
Carvão Vegetal , Crescimento Quimioautotrófico , Gammaproteobacteria/metabolismo , Oxalobacteraceae/metabolismo , Microbiologia do Solo , Thiobacillus/metabolismo , Bactérias/isolamento & purificação , Sequestro de Carbono , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Minerais , Oxalobacteraceae/genética , Oxalobacteraceae/isolamento & purificação , Solo , Thiobacillus/genética , Thiobacillus/isolamento & purificação
5.
Sci Total Environ ; 607-608: 184-194, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28689123

RESUMO

Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400°C and 500°C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400°C and 500°C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality.

6.
Front Microbiol ; 7: 372, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092104

RESUMO

Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

7.
Environ Sci Technol ; 43(24): 9329-34, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20000525

RESUMO

Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.


Assuntos
Poluentes Atmosféricos/química , Incineração/instrumentação , Metano/química , Animais , Cerâmica , Simulação por Computador , Efeito Estufa , Humanos , Incineração/métodos , Teste de Materiais , Modelos Químicos , Eliminação de Resíduos/instrumentação , Eliminação de Resíduos/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA