Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 15(8): e1008013, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437150

RESUMO

Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Müllerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade.


Assuntos
Hormônio Antimülleriano/genética , Esocidae/fisiologia , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Animais , Animais Geneticamente Modificados , Mapeamento Cromossômico , Feminino , Duplicação Gênica , Técnicas de Silenciamento de Genes , Masculino , Filogenia , Sintenia
2.
Genome Res ; 28(11): 1733-1746, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287550

RESUMO

The mammalian cell nucleus contains numerous discrete suborganelles named nuclear bodies. While recruitment of specific genomic regions into these large ribonucleoprotein (RNP) complexes critically contributes to higher-order functional chromatin organization, such regions remain ill-defined. We have developed the high-salt-recovered sequences-sequencing (HRS-seq) method, a straightforward genome-wide approach whereby we isolated and sequenced genomic regions associated with large high-salt insoluble RNP complexes. By using mouse embryonic stem cells (ESCs), we showed that these regions essentially correspond to the most highly expressed genes, and to cis-regulatory sequences like super-enhancers, that belong to the active A chromosomal compartment. They include both cell-type-specific genes, such as pluripotency genes in ESCs, and housekeeping genes associated with nuclear bodies, such as histone and snRNA genes that are central components of Histone Locus Bodies and Cajal bodies. We conclude that HRSs are associated with the active chromosomal compartment and with large RNP complexes including nuclear bodies. Association of such chromosomal regions with nuclear bodies is in agreement with the recently proposed phase separation model for transcription control and might thus play a central role in organizing the active chromosomal compartment in mammals.


Assuntos
Cromossomos/química , Ribonucleoproteínas/química , Animais , Células Cultivadas , Fracionamento Químico/métodos , Cromossomos/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Ribonucleoproteínas/metabolismo , Salinidade
3.
Bioinformatics ; 36(2): 504-513, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350542

RESUMO

MOTIVATION: Allelic imbalance (AI), i.e. the unequal expression of the alleles of the same gene in a single cell, affects a subset of genes in diploid organisms. One prominent example of AI is parental genomic imprinting, which results in parent-of-origin-dependent, mono-allelic expression of a limited number of genes in metatherian and eutherian mammals and in angiosperms. Currently available methods for identifying AI rely on data modeling and come with the associated limitations. RESULTS: We have designed ISoLDE (Integrative Statistics of alleLe Dependent Expression), a novel nonparametric statistical method that takes into account both AI and the characteristics of RNA-seq data to infer allelic expression bias when at least two biological replicates are available for reciprocal crosses. ISoLDE learns the distribution of a specific test statistic from the data and calls genes 'allelically imbalanced', 'bi-allelically expressed' or 'undetermined'. Depending on the number of replicates, predefined thresholds or permutations are used to make calls. We benchmarked ISoLDE against published methods, and showed that ISoLDE compared favorably with respect to sensitivity, specificity and robustness to the number of replicates. Using ISoLDE on different RNA-seq datasets generated from hybrid mouse tissues, we did not discover novel imprinted genes (IGs), confirming the most conservative estimations of IG number. AVAILABILITY AND IMPLEMENTATION: ISoLDE has been implemented as a Bioconductor package available at http://bioconductor.org/packages/ISoLDE/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Desequilíbrio Alélico , Impressão Genômica , Alelos , Animais , Genômica , Camundongos , Análise de Sequência de RNA
4.
BMC Genomics ; 21(1): 552, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781981

RESUMO

BACKGROUND: Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model. Here we used sequencing approaches to better characterize sex determination and sex-chromosomes in an experimental strain of goldfish. RESULTS: Our results confirmed that sex determination in goldfish is a mix of environmental and genetic factors and that its sex determination system is male heterogametic (XX/XY). Using reduced representation (RAD-seq) and whole genome (pool-seq) approaches, we characterized sex-linked polymorphisms and developed male specific genetic markers. These male specific markers were used to distinguish sex-reversed XX neomales from XY males and to demonstrate that XX female-to-male sex reversal could even occur at a relatively low rearing temperature (18 °C), for which sex reversal has been previously shown to be close to zero. We also characterized a relatively large non-recombining region (~ 11.7 Mb) on goldfish linkage group 22 (LG22) that contained a high-density of male-biased genetic polymorphisms. This large LG22 region harbors 373 genes, including a single candidate as a potential master sex gene, i.e., the anti-Mullerian hormone gene (amh). However, no sex-linked polymorphisms were detected in the coding DNA sequence of the goldfish amh gene. CONCLUSIONS: These results show that our goldfish strain has a relatively large sex locus on LG22, which is likely the Y chromosome of this experimental population. The presence of a few XX males even at low temperature also suggests that other environmental factors in addition to temperature could trigger female-to-male sex reversal. Finally, we also developed sex-linked genetic markers, which will be important tools for future research on sex determination in our experimental goldfish population. However, additional work would be needed to explore whether this sex locus is conserved in other populations of goldfish.


Assuntos
Carpa Dourada , Processos de Determinação Sexual , Animais , Feminino , Ligação Genética , Carpa Dourada/genética , Masculino , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Cromossomo Y
5.
BMC Genomics ; 20(1): 584, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307377

RESUMO

BACKGROUND: Egg quality can be defined as the egg ability to be fertilized and subsequently develop into a normal embryo. Previous research has shed light on factors that can influence egg quality. Large gaps however remain including a comprehensive view of what makes a bad egg. Initial development of the embryo relies on maternally-inherited molecules, such as transcripts, deposited in the egg during its formation. Bad egg quality is therefore susceptible to be associated with alteration or dysregulation of maternally-inherited transcripts. We performed transcriptome analysis on a large number (N = 136) of zebrafish egg clutches, each clutch being split to monitor developmental success and perform transcriptome analysis in parallel. We aimed at drawing a molecular portrait of the egg in order to characterize the relation between egg transcriptome and developmental success and to subsequently identify new candidate genes involved in fertility. RESULTS: We identified 66 transcript that were differentially abundant in eggs of contrasted phenotype (low or high developmental success). Statistical modeling using partial least squares regression and genetics algorithm demonstrated that gene signatures from transcriptomic data can be used to predict developmental success. The identity and function of differentially expressed genes indicate a major dysregulation of genes of the translational machinery in poor quality eggs. Two genes, otulina and slc29a1a, predominantly expressed in the ovary and dysregulated in poor quality eggs were further investigated using CRISPR/Cas9 mediated genome editing. Mutants of each gene revealed remarkable subfertility whereby the majority of their eggs were unfertilizable. The Wnt pathway appeared to be dysregulated in the otulina mutant-derived eggs. CONCLUSIONS: Here we show that egg transcriptome contains molecular signatures, which can be used to predict developmental success. Our results also indicate that poor egg quality in zebrafish is associated with a dysregulation of (i) the translational machinery genes and (ii) novel fertility genes, otulina and slc29a1a, playing an important role for fertilization. Together, our observations highlight the diversity of the possible causes of egg quality defects and reveal mechanisms of maternal origin behind the lack of fertilization and early embryonic failures that can occur under normal reproduction conditions.


Assuntos
Fertilidade/genética , Regulação da Expressão Gênica , Óvulo/metabolismo , Biossíntese de Proteínas , Animais , Feminino , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Via de Sinalização Wnt , Peixe-Zebra
6.
Stem Cells ; 36(2): 192-205, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29044892

RESUMO

One strategy for stem cell-based therapy of the cerebral cortex involves the generation and transplantation of functional, histocompatible cortical-like neurons from embryonic stem cells (ESCs). Diploid parthenogenetic Pg-ESCs have recently emerged as a promising source of histocompatible ESC derivatives for organ regeneration but their utility for cerebral cortex therapy is unknown. A major concern with Pg-ESCs is genomic imprinting. In contrast with biparental Bp-ESCs derived from fertilized oocytes, Pg-ESCs harbor two maternal genomes but no sperm-derived genome. Pg-ESCs are therefore expected to have aberrant expression levels of maternally expressed (MEGs) and paternally expressed (PEGs) imprinted genes. Given the roles of imprinted genes in brain development, tissue homeostasis and cancer, their deregulation in Pg-ESCs might be incompatible with therapy. Here, we report that, unexpectedly, only one gene out of 7 MEGs and 12 PEGs was differentially expressed between Pg-ESCs and Bp-ESCs while 13 were differentially expressed between androgenetic Ag-ESCs and Bp-ESCs, indicating that Pg-ESCs but not Ag-ESCs, have a Bp-like imprinting compatible with therapy. In vitro, Pg-ESCs generated cortical-like progenitors and electrophysiologically active glutamatergic neurons that maintained the Bp-like expression levels for most imprinted genes. In vivo, Pg-ESCs participated to the cortical lineage in fetal chimeras. Finally, transplanted Pg-ESC derivatives integrated into the injured adult cortex and sent axonal projections in the host brain. In conclusion, mouse Pg-ESCs generate functional cortical-like neurons with Bp-like imprinting and their derivatives properly integrate into both the embryonic cortex and the injured adult cortex. Collectively, our data support the utility of Pg-ESCs for cortical therapy. Stem Cells 2018;36:192-205.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Eletrofisiologia , Impressão Genômica/genética , Impressão Genômica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Partenogênese/genética , Partenogênese/fisiologia
7.
Nucleic Acids Res ; 45(18): 10466-10480, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985358

RESUMO

PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Impressão Genômica , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Embrião de Mamíferos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
8.
Genome Res ; 25(3): 353-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614607

RESUMO

Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.


Assuntos
Epigenômica/métodos , Impressão Genômica , Adipogenia/genética , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Análise por Conglomerados , Biologia Computacional/métodos , Metilação de DNA , Bases de Dados de Ácidos Nucleicos , Matriz Extracelular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos
9.
Cereb Cortex ; 27(3): 2418-2433, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095822

RESUMO

In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/metabolismo , Impressão Genômica , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Metilação de DNA , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Camundongos , Microscopia de Fluorescência , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
10.
J Exp Zool B Mol Dev Evol ; 328(7): 709-721, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28944589

RESUMO

Whole-genome duplications (WGDs) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however, remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of all vertebrate species. The analysis of gene expression patterns following TGD at the genome level has been limited by the lack of suitable genomic resources. The recent concomitant release of the genome sequence of spotted gar (a representative of holosteans, the closest-related lineage of teleosts that lacks the TGD) and the tissue-specific gene expression repertoires of over 20 holostean and teleostean fish species, including spotted gar, zebrafish, and medaka (the PhyloFish project), offers a unique opportunity to study the evolution of gene expression following TGD in teleosts. We show that most TGD duplicates gained their current status (loss of one duplicate gene or retention of both duplicates) relatively rapidly after TGD (i.e., prior to the divergence of medaka and zebrafish lineages). The loss of one duplicate is the most common fate after TGD with a probability of approximately 80%. In addition, the fate of duplicate genes after TGD, including subfunctionalization, neofunctionalization, or retention of two "similar" copies occurred not only before but also after the divergence of species tested, in consistency with a role of the TGD in speciation and/or evolution of gene function. Finally, we report novel cases of TGD ohnolog subfunctionalization and neofunctionalization that further illustrate the importance of these processes.


Assuntos
Evolução Molecular , Peixes/genética , Duplicação Gênica , Regulação da Expressão Gênica , Genoma , Animais , Especificidade da Espécie
11.
J Neurosci ; 35(39): 13430-47, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424889

RESUMO

Imprinted genes are dosage sensitive, and their dysregulated expression is linked to disorders of growth and proliferation, including fetal and postnatal growth restriction. Common sequelae of growth disorders include neurodevelopmental defects, some of which are indirectly related to placental insufficiency. However, several growth-associated imprinted genes are also expressed in the embryonic CNS, in which their aberrant expression may more directly affect neurodevelopment. To test whether growth-associated genes influence neural lineage progression, we focused on the maternally imprinted gene Zac1. In humans, either loss or gain of ZAC1 expression is associated with reduced growth rates and intellectual disability. To test whether increased Zac1 expression directly perturbs neurodevelopment, we misexpressed Zac1 in murine neocortical progenitors. The effects were striking: Zac1 delayed the transition of apical radial glial cells to basal intermediate neuronal progenitors and postponed their subsequent differentiation into neurons. Zac1 misexpression also blocked neuronal migration, with Zac1-overexpressing neurons pausing more frequently and forming fewer neurite branches during the period when locomoting neurons undergo dynamic morphological transitions. Similar, albeit less striking, neuronal migration and morphological defects were observed on Zac1 knockdown, indicating that Zac1 levels must be regulated precisely. Finally, Zac1 controlled neuronal migration by regulating Pac1 transcription, a receptor for the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). Pac1 and Zac1 loss- and gain-of-function presented as phenocopies, and overexpression of Pac1 rescued the Zac1 knockdown neuronal migration phenotype. Thus, dysregulated Zac1 expression has striking consequences on neocortical development, suggesting that misexpression of this transcription factor in the brain in certain growth disorders may contribute to neurocognitive deficits. Significance statement: Altered expression of imprinted genes is linked to cognitive dysfunction and neuropsychological disorders, such as Angelman and Prader-Willi syndromes, and autism spectrum disorder. Mouse models have also revealed the importance of imprinting for brain development, with chimeras generated with parthenogenetic (two maternal chromosomes) or androgenetic (two paternal chromosomes) cells displaying altered brain sizes and cellular defects. Despite these striking phenotypes, only a handful of imprinted genes are known or suspected to regulate brain development (e.g., Dlk1, Peg3, Ube3a, necdin, and Grb10). Herein we show that the maternally imprinted gene Zac1 is a critical regulator of neocortical development. Our studies are relevant because loss of 6q24 maternal imprinting in humans results in elevated ZAC1 expression, which has been associated with neurocognitive defects.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Genes Supressores de Tumor/fisiologia , Neocórtex/citologia , Neurônios/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/embriologia , Neuritos/fisiologia , Neuritos/ultraestrutura , Neurônios/ultraestrutura , Gravidez , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Fatores de Transcrição/genética
12.
BMC Genomics ; 17: 368, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189481

RESUMO

With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.


Assuntos
Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Peixes/genética , Duplicação Gênica , Expressão Gênica , Genoma , Animais , Biologia Computacional/métodos , Peixes/classificação , Perfilação da Expressão Gênica , Filogenia , Transcriptoma , Navegador
13.
Proc Natl Acad Sci U S A ; 109(8): 3047-52, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22315403

RESUMO

ß-Arrestins (Arrb) participate in the regulation of multiple signaling pathways, including Wnt/ß-catenin, the major actor in human colorectal cancer initiation. To better understand the roles of Arrb in intestinal tumorigenesis, a reverse genetic approach (Arrb(-/-)) and in vivo siRNA treatment were used in Apc(Δ14/+) mice. Mice with Arrb2 depletion (knockout and siRNA) developed only 33% of the tumors detected in their Arrb2-WT littermates, whereas Arrb1 depletion remained without significant effect. These remaining tumors grow normally and are essentially Arrb2-independent. Unsupervised hierarchical clustering analysis showed that they clustered with 25% of Apc(Δ14/+);Arrb2(+/+) tumors. Genes overexpressed in this subset reflect a high interaction with the immune system, whereas those overexpressed in Arrb2-dependent tumors are predominantly involved in Wnt signaling, cell adhesion, migration, and extracellular matrix remodeling. The involvement of Arrb2 in intestinal tumor development via the regulation of the Wnt pathway is supported by ex vivo and in vitro experiments using either tumors from Apc(Δ14/+) mice or murine Apc(Min/+) cells. Indeed, Arrb2 siRNAs decreased the expression of Wnt target genes in cells isolated from 12 of 18 tumors from Apc(Δ14/+) mice. In Apc(Min/+) cells, Arrb2 siRNAs completely reversed the increased Wnt activity and colony formation in soft agar induced by Apc siRNA treatment, whereas they did not affect these parameters in basal conditions or in cells expressing constitutively active ß-catenin. We demonstrate that Arrb2 is essential for the initiation and growth of intestinal tumors displaying elevated Wnt pathway activity and identify a previously unsuspected molecular heterogeneity among tumors induced by truncating Apc mutations.


Assuntos
Arrestinas/metabolismo , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proliferação de Células , Separação Celular , Transformação Celular Neoplásica/patologia , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Intestinais/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição 4 , Ensaio Tumoral de Célula-Tronco , beta-Arrestina 1 , beta-Arrestina 2 , beta-Arrestinas
14.
FASEB J ; 26(11): 4584-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859371

RESUMO

Brown fat or brown adipose tissue (BAT), found in newborn mammals as small depots localized in the interscapular region, plays a prominent role in regulating thermogenesis perinatally. The physiological importance of functional BAT has been recently reasserted in human adults. Because myoblasts and adipoblasts emerge from a common mesodermal precursor, we investigated developmental determination and the reciprocal relationship between muscle and adipocyte commitment. Here we show that a mutant mouse defective for both Igf2 and Myod genes exhibits massive BAT hypertrophy compared with wild-type and single-mutant newborns. The increased adipocyte proliferation in BAT of double-mutant newborns was associated with overexpression of the brown fat-specific marker Ucp1. More strikingly, expression of the master key gene Prdm16 involved in the switch between myogenic and brown adipogenic lineages was drastically enhanced. We further demonstrate that concomitant Myod and Igf2 inactivation accelerates differentiation of a brown preadipocyte cell line and induces lipid accumulation and increased Ucp1 and Prdm16 expression. This in vitro approach brings additional support for the implication of both Myod and Igf2 in BAT development. These results provide the first in vivo evidence that a myogenic regulator together with a growth factor act simultaneously but through independent pathways to repress Prdm16, which opens potential therapeutic perspectives for human metabolic disorders.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator de Crescimento Insulin-Like II/metabolismo , Proteína MyoD/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Heterozigoto , Homozigoto , Fator de Crescimento Insulin-Like II/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína MyoD/genética , RNA Interferente Pequeno , Fatores de Transcrição/genética , Proteína Desacopladora 1
15.
Hum Mol Genet ; 19(9): 1779-90, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20150233

RESUMO

Genomic imprinting regulates the expression of a group of genes monoallelically expressed in a parent-of-origin specific manner. Allele-specific DNA methylation occurs at differentially methylated regions (DMRs) of these genes. We have previously shown that in vitro fertilization and embryo culture result in methylation defects at the imprinted H19-Igf2 locus at the blastocyst stage. The current study was designed to evaluate the consequences of these manipulations on genomic imprinting after implantation in the mouse. Blastocysts were produced following three experimental conditions: (i) embryos maintained in culture medium after in vivo fertilization or (ii) in vitro fertilization and (iii) a control group with embryos obtained after in vivo fertilization and timed mating. Blastocysts were all transplanted into pseudopregnant females. Embryos and placentas were collected on day 10.5 of development. DNA methylation patterns of the H19, Igf2, Igf2r and Dlk1-Dio3 DMRs were analyzed by quantitative pyrosequencing. In contrast to blastocyst stage, methylation profiles were normal both in embryonic and placental tissues after in vitro fertilization and culture. Expression of a selected set of imprinting genes from the recently described imprinted gene network (IGN) (including Igf2 and H19) was analyzed in placental tissues by quantitative RT-PCR. Placentas obtained after in vitro fertilization and embryo culture displayed significantly disturbed levels of H19 and Igf2 mRNA, as well as of most other genes from the IGN. As embryos were phenotypically normal, we hypothesize that the modulation of a coordinated network of imprinted genes results in a compensatory process capable of correcting potential dysfunction of placenta.


Assuntos
Metilação de DNA/fisiologia , Desenvolvimento Embrionário/fisiologia , Redes Reguladoras de Genes/fisiologia , Impressão Genômica/fisiologia , Placenta/embriologia , Animais , Feminino , Fertilização in vitro , Componentes do Gene , Redes Reguladoras de Genes/genética , Impressão Genômica/genética , Técnicas In Vitro , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Gravidez , RNA Longo não Codificante , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Development ; 136(20): 3413-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19762426

RESUMO

The imprinted H19 gene produces a non-coding RNA of unknown function. Mice lacking H19 show an overgrowth phenotype, due to a cis effect of the H19 locus on the adjacent Igf2 gene. To explore the function of the RNA itself, we produced transgenic mice overexpressing H19. We observed postnatal growth reduction in two independent transgenic lines and detected a decrease of Igf2 expression in embryos. An extensive analysis of several other genes from the newly described imprinted gene network (IGN) was performed in both loss- and gain-of-function animals. We found that H19 deletion leads to the upregulation of several genes of the IGN. This overexpression is restored to the wild-type level by transgenic expression of H19. We therefore propose that the H19 gene participates as a trans regulator in the fine-tuning of this IGN in the mouse embryo. This is the first in vivo evidence of a functional role for the H19 RNA. Our results also bring further experimental evidence for the existence of the IGN and open new perspectives in the comprehension of the role of genomic imprinting in embryonic growth and in human imprinting pathologies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Feminino , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , RNA Longo não Codificante
17.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100376

RESUMO

Many salmonids have a male heterogametic (XX/XY) sex determination system, and they are supposed to have a conserved master sex-determining gene (sdY) that interacts at the protein level with Foxl2 leading to the blockage of the synergistic induction of Foxl2 and Nr5a1 of the cyp19a1a promoter. However, this hypothesis of a conserved master sex-determining role of sdY in salmonids is challenged by a few exceptions, one of them being the presence of naturally occurring "apparent" XY Chinook salmon, Oncorhynchus tshawytscha, females. Here, we show that some XY Chinook salmon females have a sdY gene (sdY-N183), with 1 missense mutation leading to a substitution of a conserved isoleucine to an asparagine (I183N). In contrast, Chinook salmon males have both a nonmutated sdY-I183 gene and the missense mutation sdY-N183 gene. The 3-dimensional model of SdY-I183N predicts that the I183N hydrophobic to hydrophilic amino acid change leads to a modification in the SdY ß-sandwich structure. Using in vitro cell transfection assays, we found that SdY-I183N, like the wild-type SdY, is preferentially localized in the cytoplasm. However, compared to wild-type SdY, SdY-I183N is more prone to degradation, its nuclear translocation by Foxl2 is reduced, and SdY-I183N is unable to significantly repress the synergistic Foxl2/Nr5a1 induction of the cyp19a1a promoter. Altogether, our results suggest that the sdY-N183 gene of XY Chinook females is nonfunctional and that SdY-I183N is no longer able to promote testicular differentiation by impairing the synthesis of estrogens in the early differentiating gonads of wild Chinook salmon XY females.


Assuntos
Salmão , Salmonidae , Animais , Feminino , Gônadas , Masculino , Salmão/genética , Processos de Determinação Sexual/genética , Testículo
18.
BMC Genomics ; 12: 241, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575240

RESUMO

BACKGROUND: G protein-coupled receptors (GPCRs) are major players in cell communication, regulate a whole range of physiological functions during development and throughout adult life, are affected in numerous pathological situations, and constitute so far the largest class of drugable targets for human diseases. The corresponding genes are usually expressed at low levels, making accurate, genome-wide quantification of their expression levels a challenging task using microarrays. RESULTS: We first draw an inventory of all endo-GPCRs encoded in the murine genome. To profile GPCRs genome-wide accurately, sensitively, comprehensively, and cost-effectively, we designed and validated a collection of primers that we used in quantitative RT-PCR experiments. We experimentally validated a statistical approach to analyze genome-wide, real-time PCR data. To illustrate the usefulness of this approach, we determined the repertoire of GPCRs expressed in cerebellar granule neurons and neuroblasts during postnatal development. CONCLUSIONS: We identified tens of GPCRs that were not detected previously in this cell type; these GPCRs represent novel candidate players in the development and survival of cerebellar granule neurons. The sequences of primers used in this study are freely available to those interested in quantifying GPCR expression comprehensively.


Assuntos
Tamanho Celular , Cerebelo/citologia , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Neurônios/metabolismo , Reação em Cadeia da Polimerase/métodos , Receptores Acoplados a Proteínas G/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Neurônios/citologia , Receptores Acoplados a Proteínas G/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
19.
BMC Genomics ; 12: 5, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21208403

RESUMO

BACKGROUND: Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. RESULTS: The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. CONCLUSION: We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research.


Assuntos
Agricultura/métodos , Café/genética , Genômica/métodos , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
20.
Dev Cell ; 11(5): 711-22, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17084362

RESUMO

Genomic imprinting is an epigenetic mechanism of regulation that restrains the expression of a small subset of mammalian genes to one parental allele. The reason for the targeting of these approximately 80 genes by imprinting remains uncertain. We show that inactivation of the maternally repressed Zac1 transcription factor results in intrauterine growth restriction, altered bone formation, and neonatal lethality. A meta-analysis of microarray data reveals that Zac1 is a member of a network of coregulated genes comprising other imprinted genes involved in the control of embryonic growth. Zac1 alters the expression of several of these imprinted genes, including Igf2, H19, Cdkn1c, and Dlk1, and it directly regulates the Igf2/H19 locus through binding to a shared enhancer. Accordingly, these data identify a network of imprinted genes, including Zac1, which controls embryonic growth and which may be the basis for the implementation of a common mechanism of gene regulation during mammalian evolution.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Desenvolvimento Embrionário , Redes Reguladoras de Genes , Genes Supressores de Tumor/fisiologia , Impressão Genômica , Fatores de Transcrição/fisiologia , Animais , Peso ao Nascer , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like II/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Osteogênese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA