Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(51): 32545-32556, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288705

RESUMO

Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster, and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum, an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphid-specific functions.


Assuntos
Afídeos/citologia , Afídeos/fisiologia , Apoptose/fisiologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Animais , Animais Geneticamente Modificados , Caspases/química , Caspases/metabolismo , Drosophila melanogaster/genética , Olho/citologia , Olho/patologia , Regulação da Expressão Gênica , Genoma de Inseto , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/genética , Filogenia , Domínios Proteicos
2.
BMC Evol Biol ; 19(1): 163, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375065

RESUMO

BACKGROUND: Ancestral character states computed from the combination of phylogenetic trees with extrinsic traits are used to decipher evolutionary scenarios in various research fields such as phylogeography, epidemiology, and ecology. Despite the existence of powerful methods and software in ancestral character state inference, difficulties may arise when interpreting the outputs of such inferences. The growing complexity of data (trees, annotations), the diversity of optimization criteria for computing trees and ancestral character states, the combinatorial explosion of potential evolutionary scenarios if some ancestral characters states do not stand out clearly from others, requires the design of new methods to explore associations of phylogenetic trees with extrinsic traits, to ease the visualization and interpretation of evolutionary scenarios. RESULT: We developed PastView, a user-friendly interface that includes numerical and graphical features to help users to import and/or compute ancestral character states from discrete variables and extract ancestral scenarios as sets of successive transitions of character states from the tree root to its leaves. PastView provides summarized views such as transition maps and integrates comparative tools to highlight agreements or discrepancies between methods of ancestral annotations inference. CONCLUSION: The main contribution of PastView is to assemble known numerical and graphical methods into a multi-maps graphical user interface dedicated to the computing, searching and viewing of evolutionary scenarios based on phylogenetic trees and ancestral character states. PastView is available publicly as a standalone software on www.pastview.org .


Assuntos
Filogenia , Software , Interface Usuário-Computador , Albânia/epidemiologia , Dengue/epidemiologia , Vírus da Dengue/genética , Infecções por HIV/epidemiologia , HIV-1/genética , Humanos , Fenótipo , Filogeografia
3.
Mol Ecol ; 28(5): 1009-1029, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593690

RESUMO

Domestic species such as cattle (Bos taurus taurus and B. t. indicus) represent attractive biological models to characterize the genetic basis of short-term evolutionary response to climate pressure induced by their post-domestication history. Here, using newly generated dense SNP genotyping data, we assessed the structuring of genetic diversity of 21 autochtonous cattle breeds from the whole Mediterranean basin and performed genome-wide association analyses with covariables discriminating the different Mediterranean climate subtypes. This provided insights into both the demographic and adaptive histories of Mediterranean cattle. In particular, a detailed functional annotation of genes surrounding variants associated with climate variations highlighted several biological functions involved in Mediterranean climate adaptation such as thermotolerance, UV protection, pathogen resistance or metabolism with strong candidate genes identified (e.g., NDUFB3, FBN1, METTL3, LEF1, ANTXR2 and TCF7). Accordingly, our results suggest that main selective pressures affecting cattle in Mediterranean area may have been related to variation in heat and UV exposure, in food resources availability and in exposure to pathogens, such as anthrax bacteria (Bacillus anthracis). Furthermore, the observed contribution of the three main bovine ancestries (indicine, European and African taurine) in these different populations suggested that adaptation to local climate conditions may have either relied on standing genomic variation of taurine origin, or adaptive introgression from indicine origin, depending on the local breed origins. Taken together, our results highlight the genetic uniqueness of local Mediterranean cattle breeds and strongly support conservation of these populations.


Assuntos
Aclimatação/genética , Variação Genética , Genômica , Animais , Cruzamento , Bovinos , Mapeamento Cromossômico , Clima , Genética Populacional , Genoma , Genótipo , Filogenia , Termotolerância/genética
4.
Bioinformatics ; 32(4): 608-10, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515823

RESUMO

MOTIVATION: Reconciliation methods aim at recovering the evolutionary processes that shaped the history of a given gene family including events such as duplications, transfers and losses by comparing the discrepancies between the topologies of the associated gene and species trees. These methods are also used in the framework of host/parasite studies to recover co-diversification scenarios including co-speciation events, host-switches and extinctions. These evolutionary processes can be graphically represented as nested trees. These interconnected graphs can be visually messy and hard to interpret, and despite the fact that reconciliations are increasingly used, there is a shortage of tools dedicated to their graphical management. Here we present SylvX, a reconciliation viewer which implements classical phylogenetic graphic operators (swapping, highlighting, etc.) and new methods to ease interpretation and comparison of reconciliations (multiple maps, moving, shrinking sub-reconciliations). AVAILABILITY AND IMPLEMENTATION: SylvX is an open source, cross-platform, standalone editor available for Windows and Unix-like systems including OSX. It is publicly available at www.sylvx.org.


Assuntos
Filogenia , Software , Evolução Molecular
5.
BMC Evol Biol ; 13: 194, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24028551

RESUMO

BACKGROUND: In vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs). RESULTS: We sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades. CONCLUSIONS: In consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands.


Assuntos
Evolução Molecular , Murinae/classificação , Murinae/genética , Receptor 4 Toll-Like/genética , Receptor 7 Toll-Like/genética , Animais , Imunidade Inata , Murinae/imunologia , Filogenia , Estrutura Terciária de Proteína , Especificidade da Espécie , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/imunologia
6.
Mol Ecol ; 22(1): 260-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23106652

RESUMO

Endosymbiotic bacteria are important drivers of insect evolutionary ecology, acting both as partners that contribute to host adaptation and as subtle parasites that manipulate host reproduction. Among them, the genus Arsenophonus is emerging as one of the most widespread lineages. Its biology is, however, entirely unknown in most cases, and it is therefore unclear how infections spread through insect populations. Here we examine the incidence and evolutionary history of Arsenophonus in aphid populations from 86 species, characterizing the processes that shape their diversity. We identify aphids as harbouring an important diversity of Arsenophonus strains. Present in 7% of the sampled species, incidence was especially high in the Aphis genus with more than 31% of the infected species. Phylogenetic investigations revealed that these Arseno-phonus strains do not cluster within an aphid-specific clade but rather exhibit distinct evolutionary origins showing that they undergo repeated horizontal transfers (HT) between distantly related host species. Their diversity pattern strongly suggests that ecological interactions, such as plant mediation and parasitism, are major drivers for Arsenophonus dispersal, dictating global incidence across insect communities. Notably, plants hosting aphids may be important ecological arenas for global exchange of Arsenophonus, serving as reservoirs for HT.


Assuntos
Afídeos/microbiologia , Evolução Biológica , Enterobacteriaceae/classificação , Filogenia , Animais , DNA Bacteriano/genética , Enterobacteriaceae/genética , Transferência Genética Horizontal , Genes Bacterianos , Dados de Sequência Molecular , Simbiose/genética
7.
Syst Biol ; 61(6): 1029-47, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22848088

RESUMO

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification. [Biogeography; coevolution; cospeciation; host switching; long-branch attraction; phylogeny.].


Assuntos
Ficus/classificação , Filogenia , Vespas/classificação , Animais , Teorema de Bayes , Ficus/genética , Especiação Genética , Filogeografia , Polinização , Simbiose , Vespas/genética
8.
Front Zool ; 10(1): 56, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24044736

RESUMO

INTRODUCTION: In the past decade ecological speciation has been recognized as having an important role in the diversification of plant-feeding insects. Aphids are host-specialised phytophagous insects that mate on their host plants and, as such, they are prone to experience reproductive isolation linked with host plant association that could ultimately lead to species formation. The generality of such a scenario remains to be tested through macroevolutionary studies. To explore the prevalence of host-driven speciation in the diversification of the aphid genus Cinara and to investigate alternative modes of speciation, we reconstructed a phylogeny of this genus based on mitochondrial, nuclear and Buchnera aphidicola DNA sequence fragments and applied a DNA-based method of species delimitation. Using a recent software (PhyloType), we explored evolutionary transitions in host-plant genera, feeding sites and geographic distributions in the diversification of Cinara and investigated how transitions in these characters have accompanied speciation events. RESULTS: The diversification of Cinara has been constrained by host fidelity to conifer genera sometimes followed by sequential colonization onto different host species and by feeding-site specialisation. Nevertheless, our analyses suggest that, at the most, only half of the speciation events were accompanied by ecological niche shifts. The contribution of geographical isolation in the speciation process is clearly apparent in the occurrence of species from two continents in the same clades in relatively terminal positions in our phylogeny. Furthermore, in agreement with predictions from scenarios in which geographic isolation accounts for speciation events, geographic overlap between species increased significantly with time elapsed since their separation. CONCLUSIONS: The history of Cinara offers a different perspective on the mode of speciation of aphids than that provided by classic models such as the pea aphid. In this genus of aphids, the role of climate and landscape history has probably been as important as host-plant specialisation in having shaped present-day diversity.

9.
New Phytol ; 191(2): 545-554, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21434933

RESUMO

The pitcher-shaped leaves of Nepenthes carnivorous plants have been considered as pitfall traps that essentially rely on slippery surfaces to capture insects. But a recent study of Nepenthes rafflesiana has shown that the viscoelasticity of the digestive fluid inside the pitchers plays a key role. Here, we investigated whether Nepenthes species exhibit diverse trapping strategies. We measured the amount of slippery wax on the pitcher walls of 23 taxa and the viscoelasticity of their digestive liquid and compared their retention efficiency on ants and flies. The amount of wax was shown to vary greatly between species. Most mountain species exhibited viscoelastic digestive fluids while water-like fluids were predominant in lowland species. Both characteristics contributed to insect trapping but wax was more efficient at trapping ants while viscoelasticity was key in trapping insects and was even more efficient than wax on flies. Trap waxiness and fluid viscoelasticity were inversely related, suggesting the possibility of an investment trade-off for the plants. Therefore Nepenthes pitcher plants do not solely employ slippery devices to trap insects but often employ a viscoelastic strategy. The entomofauna specific to the plant's habitat may exert selective pressures, favouring one trapping strategy at the expense of the other.


Assuntos
Caryophyllaceae/fisiologia , Ceras/química , Animais , Formigas , Dípteros , Insetos , Modelos Logísticos , Folhas de Planta , Comportamento Predatório , Viscosidade
10.
Genome Biol Evol ; 12(6): 878-889, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386316

RESUMO

Phages can fundamentally alter the physiology and metabolism of their hosts. Although these phages are ubiquitous in the bacterial world, they have seldom been described among endosymbiotic bacteria. One notable exception is the APSE phage that is found associated with the gammaproteobacterial Hamiltonella defensa, hosted by several insect species. This secondary facultative endosymbiont is not necessary for the survival of its hosts but can infect certain individuals or even whole populations. Its infection in aphids is often associated with protection against parasitoid wasps. This protective phenotype has actually been linked to the infection of the symbiont strain with an APSE, which carries a toxin cassette that varies among so-called "types." In the present work, we seek to expand our understanding of the diversity of APSE phages as well as the relations of their Hamiltonella hosts. For this, we assembled and annotated the full genomes of 16 APSE phages infecting Hamiltonella symbionts across ten insect species. Molecular and phylogenetic analyses suggest that recombination has occurred repeatedly among lineages. Comparative genomics of the phage genomes revealed two variable regions that are useful for phage typing. Additionally, we find that mobile elements could play a role in the acquisition of new genes in the toxin cassette. Altogether, we provide an unprecedented view of APSE diversity and their genome evolution across aphids. This genomic investigation will provide a valuable resource for the design and interpretation of experiments aiming at understanding the protective phenotype these phages confer to their insect hosts.


Assuntos
Afídeos/microbiologia , Bacteriófagos/genética , Gammaproteobacteria/virologia , Animais , Gammaproteobacteria/genética , Genoma Viral , Filogenia , Simbiose
11.
ISME J ; 14(1): 259-273, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624345

RESUMO

Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera's. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera's. Additionally, we found that the Erwinia vitamin-biosynthetic genes not only compensate for Buchnera's deficiencies, but also provide a new nutritional function; whose genes have been horizontally acquired from a Sodalis-related bacterium. A subset of these genes have been subsequently transferred to a new Hamiltonella co-obligate symbiont in one specific Cinara lineage. These results show that the establishment and dynamics of multi-partner endosymbioses can be mediated by lateral gene transfers between co-ocurring symbionts.


Assuntos
Afídeos/microbiologia , Buchnera/genética , Erwinia/genética , Transferência Genética Horizontal , Simbiose/genética , Animais , Vitaminas/biossíntese
12.
Proc Biol Sci ; 276(1654): 187-96, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18782748

RESUMO

Aphids harbour an obligatory symbiont, Buchnera aphidicola, providing essential amino acids not supplied by their diet. These bacteria are transmitted vertically and phylogenic analyses suggest that they have 'cospeciated' with their hosts. We investigated this cospeciation phenomenon at a fine taxonomic level, within the aphid genus Brachycaudus. We used DNA-based methods of species delimitation in both organisms, to avoid biases in the definition of aphid and Buchnera species and to infer association patterns without the presumption of a specific interaction. Our results call into question certain 'taxonomic' species of Brachycaudus and suggest that B. aphidicola has diversified into independently evolving entities, each specific to a 'phylogenetic' Brachycaudus species. We also found that Buchnera and their hosts simultaneously diversified, in parallel. These results validate the use of Buchnera DNA data for inferring the evolutionary history of their host. The Buchnera genome evolves rapidly, making it the perfect tool for resolving ambiguities in aphid taxonomy. This study also highlights the usefulness of species delimitation methods in cospeciation studies involving species difficult to conceptualize--as is the case for bacteria--and in cases in which the taxonomy of the interacting organisms has not been determined independently and species definition depends on host association.


Assuntos
Afídeos/microbiologia , Evolução Biológica , Buchnera/genética , Especiação Genética , Genoma Bacteriano , Animais , Afídeos/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
13.
Ecol Evol ; 9(20): 11657-11671, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695876

RESUMO

Climate adaptation has major consequences in the evolution and ecology of all living organisms. Though phytophagous insects are an important component of Earth's biodiversity, there are few studies investigating the evolution of their climatic preferences. This lack of research is probably because their evolutionary ecology is thought to be primarily driven by their interactions with their host plants. Here, we use a robust phylogenetic framework and species-level distribution data for the conifer-feeding aphid genus Cinara to investigate the role of climatic adaptation in the diversity and distribution patterns of these host-specialized insects. Insect climate niches were reconstructed at a macroevolutionary scale, highlighting that climate niche tolerance is evolutionarily labile, with closely related species exhibiting strong climatic disparities. This result may suggest repeated climate niche differentiation during the evolutionary diversification of Cinara. Alternatively, it may merely reflect the use of host plants that occur in disparate climatic zones, and thus, in reality the aphid species' fundamental climate niches may actually be similar but broad. Comparisons of the aphids' current climate niches with those of their hosts show that most Cinara species occupy the full range of the climatic tolerance exhibited by their set of host plants, corroborating the hypothesis that the observed disparity in Cinara species' climate niches can simply mirror that of their hosts. However, 29% of the studied species only occupy a subset of their hosts' climatic zone, suggesting that some aphid species do indeed have their own climatic limitations. Our results suggest that in host-specialized phytophagous insects, host associations cannot always adequately describe insect niches and abiotic factors must be taken into account.

14.
Evolution ; 62(7): 1777-1797, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18419750

RESUMO

The study of chalcid wasps that live within syconia of fig trees (Moraceae, Ficus), provides a unique opportunity to investigate the evolution of specialized communities of insects. By conducting cospeciation analyses between figs of section Galoglychia and some of their associated fig wasps, we show that, although host switches and duplication have evidently played a role in the construction of the current associations, the global picture is one of significant cospeciation throughout the evolution of these communities. Contrary to common belief, nonpollinating wasps are at least as constrained as pollinators by their host association in their diversification in this section. By adapting a randomization test in a supertree context, we further confirm that wasp phylogenies are significantly congruent with each other, and build a "wasp community" supertree that retrieves Galoglychia taxonomic subdivisions. Altogether, these results probably reflect wasp host specialization but also, to some extent, they might indicate that niche saturation within the fig prevents recurrent intrahost speciation and host switching. Finally, a comparison of ITS2 sequence divergence of cospeciating pairs of wasps suggests that the diversification of some pollinating and nonpollinating wasps of Galoglychia figs has been synchronous but that pollinating wasps exhibit a higher rate of molecular evolution.


Assuntos
Ficus/genética , Especiação Genética , Polinização , Simbiose , Vespas/genética , Animais , Filogenia
15.
Mol Ecol Resour ; 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29697894

RESUMO

Cospeciation studies aim at investigating whether hosts and symbionts speciate simultaneously or whether the associations diversify through host shifts. This problem is often tackled through reconciliation analyses that map the symbiont phylogeny onto the host phylogeny by mixing different types of diversification events. These reconciliations can be difficult to interpret and are not always biologically realistic. Researchers have underlined that the biogeographic histories of both hosts and symbionts influence the probability of cospeciation and host switches, but up to now no reconciliation software integrates geographic data. We present a new functionality in the Mowgli software that bridges this gap. The user can provide geographic information on both the host and symbiont extant and ancestral taxa. Constraints in the reconciliation algorithm have been implemented to generate biologically realistic codiversification scenarios. We apply our method to the fig/fig wasp association and infer diversification scenarios that differ from reconciliations ignoring geographic information. In addition, we updated the reconciliation viewer SylvX to visualize ancestral character states on the phylogenetic trees and highlight parts of reconciliations that are geographically inconsistent when not accounting for geographic constraints. We suggest that the comparison of reconciliations obtained with and without such constraints can help solving ambiguities in the biogeographic histories of the partners. With the development of robust methods in historical biogeography, and the advent of next-generation sequencing that leads to better-resolved trees, a geography-aware reconciliation method represents a substantial advance that is likely to be useful to researchers studying the evolution of biotic interactions and biogeography.

16.
Microbiome ; 6(1): 181, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305166

RESUMO

BACKGROUND: Most metazoans are involved in durable relationships with microbes which can take several forms, from mutualism to parasitism. The advances of NGS technologies and bioinformatics tools have opened opportunities to shed light on the diversity of microbial communities and to give some insights into the functions they perform in a broad array of hosts. The pea aphid is a model system for the study of insect-bacteria symbiosis. It is organized in a complex of biotypes, each adapted to specific host plants. It harbors both an obligatory symbiont supplying key nutrients and several facultative symbionts bringing additional functions to the host, such as protection against biotic and abiotic stresses. However, little is known on how the symbiont genomic diversity is structured at different scales: across host biotypes, among individuals of the same biotype, or within individual aphids, which limits our understanding on how these multi-partner symbioses evolve and interact. RESULTS: We present a framework well adapted to the study of genomic diversity and evolutionary dynamics of the pea aphid holobiont from metagenomic read sets, based on mapping to reference genomes and whole genome variant calling. Our results revealed that the pea aphid microbiota is dominated by a few heritable bacterial symbionts reported in earlier works, with no discovery of new microbial associates. However, we detected a large and heterogeneous genotypic diversity associated with the different symbionts of the pea aphid. Partitioning analysis showed that this fine resolution diversity is distributed across the three considered scales. Phylogenetic analyses highlighted frequent horizontal transfers of facultative symbionts between host lineages, indicative of flexible associations between the pea aphid and its microbiota. However, the evolutionary dynamics of symbiotic associations strongly varied depending on the symbiont, reflecting different histories and possible constraints. In addition, at the intra-host scale, we showed that different symbiont strains may coexist inside the same aphid host. CONCLUSIONS: We present a methodological framework for the detailed analysis of NGS data from microbial communities of moderate complexity and gave major insights into the extent of diversity in pea aphid-symbiont associations and the range of evolutionary trajectories they could take.


Assuntos
Afídeos/microbiologia , Buchnera/isolamento & purificação , Microbiota/genética , Rickettsia/isolamento & purificação , Simbiose/fisiologia , Animais , Buchnera/classificação , Buchnera/genética , Genoma Bacteriano/genética , Metagenoma/genética , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Rickettsia/classificação , Rickettsia/genética
17.
Genome Biol Evol ; 10(9): 2178-2189, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102395

RESUMO

Genome reduction is pervasive among maternally inherited bacterial endosymbionts. This genome reduction can eventually lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbor two obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara strobi harbors not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and Sodalis) actually contribute to the hosts' supply of essential nutrients while S. symbiotica has become unable to contribute towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a few proteins and displays extensive pseudogenization. Thus, we propose an ongoing symbiont replacement within C. strobi, in which a once "competent" S. symbiotica does no longer contribute towards the beneficial association. These results suggest that in dual symbiotic systems, when a substitute cosymbiont is available, genome deterioration can precede genome reduction and a symbiont can be maintained despite the apparent lack of benefit to its host.


Assuntos
Afídeos/microbiologia , Buchnera/genética , Enterobacteriaceae/genética , Genoma Bacteriano , Serratia/genética , Simbiose , Animais , Afídeos/fisiologia , Evolução Biológica , Buchnera/isolamento & purificação , Buchnera/fisiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/fisiologia , Redes e Vias Metabólicas , Serratia/isolamento & purificação , Serratia/fisiologia
18.
Evolution ; 57(6): 1255-69, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12894934

RESUMO

The interaction between Ficus (Moraceae) and their pollinating wasps (Chalcidoidea: Agaonidae; more than 700 species-specific couples) is one of the most specialized mutualisms found in nature. Both partners of this interaction show extensive variation in their respective biology. Here we investigate Ficus life-history trait evolution and fig/fig wasp coadaptation in the context of a well-resolved molecular phylogeny. Mapping out variations in Ficus life-history traits on an independently derived phylogeny constructed from ribosomal DNA sequences (external and internal transcribed spacer) reveals several parallel transitions in Ficus growth habit and breeding system. Convergent trait evolution might explain the discrepancies between morphological analyses and our molecular reconstruction of the genus. Morphological characters probably correlate with growth habit and breeding system and could therefore be subject to convergent evolution. Furthermore, we reconstruct the evolution of Ficus inflorescence characters that are considered adaptations to the pollinators. Our phylogeny reveals convergences in ostiole shape, stigma morphology, and stamen:ovule ratio. Statistical tests taking into account the phylogenetic relationship of the species show that transitions in ostiole shape are correlated with variation in wasp pollinator head shape, and evolutionary changes in stigma morphology and stamen:ovule ratio correlate with changes in the pollination behavior of the associated wasp. These correlations provide evidence for reciprocal adaptations of morphological characters between these mutualistic partners that have interacted over a long evolutionary time. In light of previous ecological studies on mutualism, we discuss the adaptive significance of these correlations and what they can tell us about the coevolutionary process occurring between figs and their pollinators.


Assuntos
Adaptação Biológica , Ficus/genética , Ficus/fisiologia , Filogenia , Simbiose , Vespas/fisiologia , Animais , Sequência de Bases , Ficus/anatomia & histologia , Flores/anatomia & histologia , Dados de Sequência Molecular , Reprodução/fisiologia , Análise de Sequência de DNA
19.
Proc Biol Sci ; 271(1544): 1185-95, 2004 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15306369

RESUMO

A classic example of a mutualism is the one between fig plants (Ficus) and their specialized and obligate pollinating wasps. The wasps deposit eggs in fig ovules, which the larvae then consume. Because the wasps derive their fitness only from consumed seeds, this mutualism can persist only if the wasps are prevented from laying eggs in all ovules. The search for mechanisms that can limit oviposition and stabilize the wasp-seed conflict has spanned more than three decades. We use a simple foraging model, parameterized with data from two Ficus species, to show how fig morphology reduces oviposition rates and helps to resolve the wasp-seed conflict. We also propose additional mechanisms, based on known aspects of fig biology, which can prevent even large numbers of wasps from ovipositing in all ovules. It has been suggested that in mutualistic symbioses, the partner that controls the physical resources, in this case Ficus, ultimately controls the rate at which hosts are converted to visitors, regardless of relative evolutionary rates. Our approach provides a mechanistic implementation of this idea, with potential applications to other mutualisms and to theories of virulence.


Assuntos
Comportamento Alimentar/fisiologia , Ficus/fisiologia , Modelos Biológicos , Oviposição/fisiologia , Simbiose , Vespas/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Comportamento Competitivo/fisiologia , Ficus/anatomia & histologia , Frutas , Filogenia , Dinâmica Populacional , Fatores de Tempo
20.
Viruses ; 6(3): 1112-34, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24618811

RESUMO

In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses' molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space.


Assuntos
Evolução Molecular , Murinae/virologia , Orthohantavírus/genética , Animais , Biologia Computacional , Variação Genética , Filogeografia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA