Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
PLoS Pathog ; 19(8): e1011581, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37594999

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the "shock and kill" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H2O2) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Herpesviridae , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Humanos , Antioxidantes , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Latência Viral
2.
J Nanobiotechnology ; 20(1): 266, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672826

RESUMO

Surgical resection to achieve tumor-free margins represents a difficult clinical scenario for patients with hepatocellular carcinoma. While post-surgical treatments such as chemotherapy and radiotherapy can decrease the risk of cancer recurrence and metastasis, growing concerns about the complications and side effects have promoted the development of implantable systems for locoregional treatment. Herein, 3D printed hydrogel scaffolds (designed as Gel-SA-CuO) were developed by incorporating one agent with multifunctional performance into implantable devices to simplify the fabrication process for efficiently inhibiting postoperative tumor recurrence. CuO nanoparticles can be effectively controlled and sustained released during the biodegradation of hydrogel scaffolds. Notably, the released CuO nanoparticles not only function as the reservoir for releasing Cu2+ to produce intracellular reactive oxygen species (ROS) but also serve as photothermal agent to generate heat. Remarkably, the heat generated by photothermal conversion of CuO nanoparticles further promotes the efficiency of Fenton-like reaction. Additionally, ferroptosis can be induced through Cu2+-mediated GSH depletion via the inactivation of GPX4. By implanting hydrogel scaffolds in the resection site, efficient inhibition of tumor recurrence after primary resection can be achieved in vivo. Therefore, this study may pave the way for the development of advanced multifunctional implantable platform for eliminating postoperative relapsable cancers.


Assuntos
Ferroptose , Neoplasias Hepáticas , Nanopartículas , Linhagem Celular Tumoral , Glutationa , Humanos , Hidrogéis , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle , Impressão Tridimensional
3.
J Infect Dis ; 223(11): 1842-1854, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837392

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients manifest with pulmonary symptoms reflected by diffuse alveolar damage (DAD), excessive inflammation, and thromboembolism. The mechanisms mediating these processes remain unclear. METHODS: We performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases. RESULTS: Lung parenchyma showed severe DAD with thromboemboli. Viral infection was found in an extensive range of cells including pneumocyte type II, ciliated, goblet, club-like, and endothelial cells. More than 90% of infiltrating immune cells were positive for viral proteins including macrophages, monocytes, neutrophils, natural killer (NK) cells, B cells, and T cells. Most but not all infected cells were angiotensin-converting enzyme 2 (ACE2) positive. The numbers of infected and ACE2-positive cells are associated with extensive tissue damage. Infected tissues exhibited high levels of inflammatory cells including macrophages, monocytes, neutrophils, and NK cells, and low levels of B cells but abundant T cells consisting of mainly T helper cells, few cytotoxic T cells, and no regulatory T cells. Robust interleukin-6 expression was present in most cells, with or without infection. CONCLUSIONS: In fatal COVID-19 lungs, there are broad SARS-CoV-2 cell tropisms, extensive infiltrated innate immune cells, and activation and depletion of adaptive immune cells, contributing to severe tissue damage, thromboemboli, excess inflammation, and compromised immune responses.


Assuntos
COVID-19/patologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Tropismo Viral , Adulto , Idoso , COVID-19/imunologia , COVID-19/virologia , Feminino , Humanos , Imunidade Inata , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Tropismo Viral/imunologia
4.
J Med Virol ; 93(8): 5065-5075, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942339

RESUMO

Viral infection has been implicated in the pathogenesis of a plethora of human diseases. Although antiviral therapies effectively confront the viral spread and infection, how to completely eradicate the viral genome from infected cells remains a challenge. In this study, we demonstrated the reversible switching of primary cells between normal and malignant states by an oncogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) and CRISPR/Cas9-mediated targeting of a major viral latent protein. Primary cells can be transformed into malignant status by infection of KSHV, while elimination of the KSHV genome from latent KSHV-infected cells reverses KSHV-transformed primary cells back to a "normal state" by CRISPR/Cas-mediated knockout of viral major latent gene LANA. As a proof of concept, we demonstrated efficient elimination of KSHV episome in KSHV-associated primary effusion lymphoma cells resulting in the induction of apoptosis by liposome-encapsulated CRISPR/Cas9 ribonucleoprotein complexes (Lipo/Cas9-LANAsgRNA). Our work illustrates CRISPR/Cas as a promising technology for eliminating oncogenic viruses from persistently infected cells by taking advantage of the genetic differences between viral and cellular genomes. Compared to traditional antiviral therapy, our study offer an approach for antagonizing human oncogenic virus-related cancers by directly targeting as well as clearing viral genomes.


Assuntos
Antígenos Virais/genética , Sistemas CRISPR-Cas , Transformação Celular Neoplásica/genética , Herpesvirus Humano 8/genética , Proteínas Nucleares/genética , Vírus Oncogênicos/genética , Animais , Antígenos Virais/metabolismo , Apoptose , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Ciclo Celular , Proliferação de Células , Técnicas de Inativação de Genes , Genoma Viral/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Linfoma de Efusão Primária/patologia , Células-Tronco Mesenquimais , Proteínas Nucleares/metabolismo , Vírus Oncogênicos/patogenicidade , RNA Guia de Cinetoplastídeos/genética , Ratos , Latência Viral/genética
5.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34324210

RESUMO

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Trato Gastrointestinal/virologia , Genitália/virologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Sistema Imunitário/virologia , Neuropilina-1/metabolismo , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Internalização do Vírus , Western Blotting , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Células Cultivadas , Imunofluorescência , Trato Gastrointestinal/citologia , Genitália/citologia , Humanos , Sistema Imunitário/citologia , Sistema Respiratório/citologia
6.
Chemistry ; 26(34): 7573-7577, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32128887

RESUMO

Protein therapeutics have inspired intensive research interest in a variety of realms. It is still urgently required to avoid premature or unexpected activation of therapeutic proteins to achieve great specificity for therapy. Herein, we reported a modular AND gate-controlled delivery platform for tumor microenvironment specific activation of therapeutic protein activity based on biomineralization of molecular glue-adhered protein enzyme. The AND gate integrates the specific microenvironment of tumor tissues (acidic pH and a certain concentration of ATP) as inputs and activates the therapeutic activity of protein only when both inputs are active. More importantly, the activity of therapeutic protein would not be activated either at acidic pH or in the presence of ATP, which could greatly avoid the deleterious effect on normal tissues. Besides, this AND gate can be modular design and suitable for a variety of therapeutic proteins and nucleic acids.


Assuntos
Microambiente Tumoral , Fenômenos Bioquímicos , Humanos , Microambiente Tumoral/efeitos dos fármacos
7.
Nanotechnology ; 29(6): 065501, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29226844

RESUMO

The logic device demultiplexer can convey a single input signal into one of multiple output channels. The choice of the output channel is controlled by a selector. Several molecules and biomolecules have been used to mimic the function of a demultiplexer. However, the practical application of logic devices still remains a big challenge. Herein, we design and construct an intelligent 1:2 demultiplexer as a theranostic device based on azobenzene (azo)-modified and DNA/Ag cluster-gated nanovehicles. The configuration of azo and the conformation of the DNA ensemble can be regulated by light irradiation and pH, respectively. The demultiplexer which uses light as the input and acid as the selector can emit red fluorescence or a release drug under different conditions. Depending on different cells, the intelligent logic device can select the mode of cellular imaging in healthy cells or tumor therapy in tumor cells. The study incorporates the logic gate with the theranostic device, paving the way for tangible applications of logic gates in the future.


Assuntos
DNA/química , Espaço Intracelular/química , Nanopartículas/química , Prata/química , Nanomedicina Teranóstica/instrumentação , Animais , Morte Celular , Sobrevivência Celular , Endocitose , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Luz , Camundongos , Células NIH 3T3 , Nanocompostos/química , Nanocompostos/ultraestrutura
8.
Small ; 13(25)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28508454

RESUMO

Nanozymes have shown great potential in bioapplications owing to their low cost, high stability, multiple activity, and biocompatibility. However, most of the known nanozymes are always at turn-on state, hindering their further applications. Herein, a simple and versatile method for constructing activity-controllable nanozymes is presented. To the best of our knowledge, this is the first report to utilize the light-driven isomerization of azobenzene (Azo) and host-guest interaction to reversibly photoregulating the activity of nanozyme. Gold nanoparticles as a typical catalase-mimic nanozyme are used in this design. The expanded Azo-modified mesoporous silica is employed as supported material to encapsulate and disperse Au nanoparticles, which further combines with cyclodextrin (CD). The catalytic activity of the nanozyme is blocked by CD and can be activated or inhibited reversibly by UV or visible light. The results indicated that the nanozyme can reversibly regulate reactive oxygen species (ROS) level in extracellular and intracellular environment for multiple cycles and change cell viability by simply changing the irradiated light. This is a general method and can be adapted to construct various smart nanozymes with highly spatiotemporal resolution.


Assuntos
Luz , Espécies Reativas de Oxigênio/química , Compostos Azo/química , Ciclodextrinas/química
9.
Chemistry ; 23(54): 13518-13524, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28741846

RESUMO

Skin cancers caused by UV irradiation have been a major public health problem. One simple and effective way to avoid the above detrimental effects is the use of UV-protective sunscreens. However, there has been considerable concern with the issue of the production of reactive oxygen species (ROS) through the photodegradation of commercial UV filters. Herein, for the first time, it is reported that the integration of ZnO nanoparticles and CeOx nanoparticles into hollow microspheres (ZnO/CeOx HMS) could provide broad-spectrum UV protection and scavenge generated ROS under UV irradiation. Benefiting from the cooperative effect of the hollow structure and the antioxidative activity of CeOx , ROS generated under UV irradiation could be confined to a limited space and effectively conversion into nontoxic molecules is catalyzed as a consequence of increased collision frequency. Therefore, both primary, direct UV-induced damage and secondary ROS toxicity could be greatly reduced.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Protetores Solares/química , Raios Ultravioleta , Animais , Catálise , Sobrevivência Celular/efeitos dos fármacos , Cério/química , Vermelho Congo/química , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Nanopartículas Metálicas/química , Camundongos , Microscopia de Fluorescência , Fotólise , Espécies Reativas de Oxigênio/química , Pele/patologia , Pele/efeitos da radiação , Protetores Solares/farmacologia , Óxido de Zinco/química
10.
Angew Chem Int Ed Engl ; 55(23): 6646-50, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27098681

RESUMO

In this work, for the first time, we constructed a novel multi-nanozymes cooperative platform to mimic intracellular antioxidant enzyme-based defense system. V2 O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2 O5 @pDA@MnO2 nanocomposite could serve as one multi-nanozyme model to mimic intracellular antioxidant enzyme-based defense procedure in which, for example SOD, CAT, and GPx co-participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy.


Assuntos
Antioxidantes/metabolismo , Materiais Biocompatíveis/metabolismo , Animais , Antioxidantes/química , Materiais Biocompatíveis/química , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Camundongos , Microscopia de Fluorescência , Nanofios/química , Otite/induzido quimicamente , Otite/patologia , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Compostos de Vanádio/química
11.
Angew Chem Int Ed Engl ; 55(38): 11467-71, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27504861

RESUMO

Graphitic carbon nitride (g-C3 N4 ) has been used as photosensitizer to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). However, its therapeutic efficiency was far from satisfactory. One of the major obstacles was the overexpression of glutathione (GSH) in cancer cells, which could diminish the amount of generated ROS before their arrival at the target site. Herein, we report that the integration of Cu(2+) and g-C3 N4 nanosheets (Cu(2+) -g-C3 N4 ) led to enhanced light-triggered ROS generation as well as the depletion of intracellular GSH levels. Consequently, the ROS generated under light irradiation could be consumed less by reduced GSH, and efficiency was improved. Importantly, redox-active species Cu(+) -g-C3 N4 could catalyze the reduction of molecular oxygen to the superoxide anion or hydrogen peroxide to the hydroxyl radical, both of which facilitated the generation of ROS. This synergy of improved ROS generation and GSH depletion could enhance the efficiency of PDT for cancer therapy.


Assuntos
Cobre/química , Glutationa/metabolismo , Nanoestruturas/química , Nitrilas/química , Espécies Reativas de Oxigênio/metabolismo , Catálise , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Glutationa/química , Grafite/química , Células HeLa , Humanos , Luz , Nanoestruturas/uso terapêutico , Nanoestruturas/toxicidade , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Teoria Quântica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Chemistry ; 21(7): 2930-5, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25504567

RESUMO

Facile growth of CuS nanowires through self-assembly and their application as building blocks for near-infrared light-responsive functional films have been demonstrated. It is found that DNA is a key factor in preparing the CuS material with defined nanostructure. An exclusive oriented self-aggregate growth mechanism is proposed for the growth of the nanowires, which might have important implications for preparing advanced, sophisticated nanostructures based on DNA nanotechnology. By employing the hydrophilic CuS nanowire as an optical absorber and thermosensitive nanogel as guest reservoir inside alginate film, a new platform for the release of functional molecules has been set up. In vitro studies have shown that the hybrid film possesses excellent biocompatibility and the release rate of chemical molecules from the film could be controlled with high spatial and temporal precision. Our novel approach and the resulting outstanding combination of properties may advance both the fields of DNA nanotechnology and light-responsive devices.


Assuntos
Cobre/química , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Nanofios/química , Interações Hidrofóbicas e Hidrofílicas
13.
Chemistry ; 21(9): 3791-7, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25614445

RESUMO

Herein, a new strategy has been developed through combining a microwave-assisted technique with hydrothermal treatment to reduce graphene waste and improve production yield of graphene quantum dots (GQDs) prepared by top-down methods. By using fluorinated graphene oxide (FGO) as a raw material, fluorinated GQDs and nonfluorinated GQDs can be synthesized. Additionally, in the fluorinated GQDs, the protective shell supplied by fluorine improves the pH stability of photoluminescence and the strong electron-withdrawing group, -F, reduces the π-electron density of the aromatic structure; thus inhibiting reactivity toward singlet oxygen produced during irradiation and improving the photostability. Therefore, the as-prepared fluorinated GQDs with excellent photo- and pH stability are suitable for long-term cellular imaging.


Assuntos
Grafite/química , Óxidos/química , Pontos Quânticos/química , Halogenação , Micro-Ondas , Imagem Molecular/métodos
14.
Angew Chem Int Ed Engl ; 54(16): 4904-8, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25706244

RESUMO

A powerful strategy for long-term and diffusional-resistance-minimized whole-cell biocatalysis in biphasic systems is reported where individually encapsulated bacteria are employed as robust and recyclable Pickering interfacial biocatalysts. By individually immobilizing bacterial cells and optimizing the hydrophobic/hydrophilic balance of the encapsulating magnetic mineral shells, the encased bacteria became interfacially active and locate at the Pickering emulsion interfaces, leading to dramatically enhanced bioconversion performances by minimizing internal and external diffusional resistances. Moreover, in situ product separation and biocatalyst recovery was readily achieved using a remote magnetic field. Importantly, the mineral shell effectively protected the entire cell from long-term organic-solvent stress, as shown by the reusability of the biocatalysts for up to 30 cycles, while retaining high stereoselective catalytic activities, cell viabilities, and proliferative abilities.


Assuntos
Bactérias/metabolismo , Alcaligenes faecalis/química , Alcaligenes faecalis/efeitos dos fármacos , Alcaligenes faecalis/metabolismo , Bactérias/química , Bactérias/efeitos dos fármacos , Biocatálise , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Emulsões/química , Fluoresceínas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Magnetismo , Microscopia Confocal , Nanoestruturas/química
15.
Chemistry ; 20(2): 394-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24327351

RESUMO

An antibacterial platform based on multifunctional reduced graphene oxide (rGO) that is responsive to near-infrared (NIR) light has been constructed. By introducing a luminescent Eu(3+) complex and vancomycin for bacteria tracking into one system, this platform could specifically recognize and light up bacteria. Antibacterial activity of this nanoscale construction under NIR illumination was investigated. Upon illumination with NIR light, this nanoscale architecture generates great heat locally, resulting in the death of drug-resistant bacteria. These results indicate that the ability of this nanoscale platform to kill drug-resistant bacteria has great potential for clinical pathogenic bacteria diagnosis and treatment.


Assuntos
Antibacterianos/química , Complexos de Coordenação/química , Farmacorresistência Bacteriana , Európio , Corantes Fluorescentes/química , Grafite/química , Óxidos/química , Vancomicina/química , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Corantes Fluorescentes/farmacologia , Grafite/farmacologia , Células Hep G2 , Temperatura Alta , Humanos , Lasers , Nanoestruturas , Oxirredução , Óxidos/farmacologia , Vancomicina/farmacologia
16.
Chemistry ; 20(43): 14012-7, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25200923

RESUMO

Malignant tumors remain a major health burden throughout the world and effective therapeutic strategies are urgently needed. Herein, we report the synthesis of upconverting nanoparticles with a mesoporous TiO2 (mTiO2) shell for near-infrared (NIR)-triggered drug delivery and synergistic targeted cancer therapy. The NaGdF4:Yb,Tm could convert NIR light to UV light, which activated the mTiO2 to produce reactive oxygen species for photodynamic therapy (PDT). Due to the large surface area and porous structure, the mTiO2 shell endowed the nanoplatform with another functionality of anticancer drug loading for chemotherapy. The hyaluronic acid modified on the surface not only promised controlled drug release but also conferred targeted ability of the system toward cluster determinant 44 overexpressed cancer cells. More importantly, cytotoxicity experiments demonstrated that combined therapy mediated the highest rate of death of breast carcinoma cells compared with that of single chemotherapy or PDT.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Titânio/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Camundongos , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/ultraestrutura , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Porosidade , Titânio/química
17.
ACS Appl Mater Interfaces ; 16(7): 8527-8537, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329426

RESUMO

Bleeding and bacterial infections are crucial factors affecting wound healing. The usage of herbal medicine-derived materials holds great potential for promoting wound healing. However, the uncertain intrinsic effective ingredients and unclear mechanism of action remain great concerns. Herein, inspired by the herbal medicine Ligusticum wallichii, we reported the synthesis of tetramethylpyrazine-derived carbon quantum dots (TMP-CQDs) for promoting wound healing. Of note, the use of TMP as the precursor instead of L. wallichii ensured the repeatability and homogeneity of the obtained products. Furthermore, TMP-CQDs exhibited high antibacterial activity. Mechanically, TMP-CQDs inhibited the DNA repair, biosynthesis, and quorum sensing of the bacteria and induced intracellular reactive oxygen species (ROS). Moreover, TMP-CQDs could accelerate blood coagulation through activating factor VIII and promoting platelet aggregation. Effective wound healing was achieved by using TMP-CQDs in the Staphylococcus aureus-infected mouse skin wound model. This study sheds light on the development of herbal medicine-inspired materials as effective therapeutic drugs.


Assuntos
Medicamentos de Ervas Chinesas , Pontos Quânticos , Camundongos , Animais , Carbono , Pontos Quânticos/uso terapêutico , Antibiose , Coagulação Sanguínea , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
18.
Small ; 9(24): 4262-8, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23843269

RESUMO

Multifunctional lanthanide-doped porous nanoparticles are prepared via a facile one-step solvothermal route by employing aptamers as the biotemplate. The nanoparticles feature excellent aqueous dispersibility and biospecific properties and could work as effective nanoprobes for targeted imaging and drug delivery. With aptamer being in principle available for any kind of target, this synthetic strategy may open the door to a new generation of nanoprobes for bioapplications such as time-resolved biodetection, multimode bioimaging/biolabeling, and targeted cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Linhagem Celular , Linhagem Celular Tumoral , Meios de Contraste/química , DNA/química , Humanos , Células MCF-7 , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanotecnologia , Neoplasias/terapia , Oligonucleotídeos/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Sais de Tetrazólio , Tiazóis
19.
Bioact Mater ; 28: 50-60, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37214257

RESUMO

As the most abundant liver-specific microRNA, microRNA-122 (miR122) played a crucial role in the differentiation of stem cells into hepatocytes. However, highly efficient miR122 delivery still confronts challenges including poor cellular uptake and easy biodegradation. Herein, we for the first time demonstrated that the tetrahedral DNA (TDN) nanoplatform had great potential in inducing the differentiation of human mesenchymal stem cells (hMSCs) into functional hepatocyte-like cells (HLCs) by transferring the liver-specific miR122 to hMSCs efficiently without any extrinsic factors. As compared with miR122, miR122-functionalized TDN (TDN-miR122) could significantly up-regulate the protein expression levels of mature hepatocyte markers and hepatocyte-specific marker genes in hMSCs, indicating that TDN-miR122 could particularly activate the hepatocyte-specific properties of hMSCs for developing cell-based therapies in vitro. The transcriptomic analysis further indicated the potential mechanism that TDN-miR122 assisted hMSCs differentiated into functional HLCs. The TDN-miR122-hMSCs exhibited hepatic cell morphology phenotype, significantly up-regulated specific hepatocyte genes and hepatic biofunctions in comparison with the undifferentiated MSCs. Preclinical in vivo transplantation appeared that TDN-miR122-hMSCs in combination with or without TDN could efficiently rescue acute liver failure injury through hepatocyte function supplement, anti-apoptosis, cellular proliferation promotion, and anti-inflammatory. Collectively, our findings may provide a new and facile approach for hepatic differentiation of hMSCs for acute liver failure therapy. Further large animal model explorations are needed to study their potential in clinical translation in the future.

20.
J Mater Chem B ; 11(28): 6595-6602, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37365998

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers with increasing incidence worldwide. However, it is still challenging to prevent the relapse of cSCC due to poor drug penetration across the stratum corneum. Herein, we report the design of a microneedle patch loaded with MnO2/Cu2O nanosheets and combretastatin A4 (MN-MnO2/Cu2O-CA4) for the enhanced therapy of cSCC. The prepared MN-MnO2/Cu2O-CA4 patch could effectively deliver adequate drugs locally into the tumor sites. Moreover, the glucose oxidase (GOx)-mimicking activity of MnO2/Cu2O could catalyze glucose to produce H2O2, which combined with the released Cu to induce a Fenton-like reaction to efficiently generate hydroxyl radicals for chemodynamic therapy. Meanwhile, the released CA4 could inhibit cancer cell migration and tumor growth by disrupting the tumor vasculature. Moreover, MnO2/Cu2O was endowed with the ability of photothermal conversion under the irradiation of near-infrared (NIR) laser, which could not only kill the cancer cells but also promote the efficiency of the Fenton-like reaction. Significantly, the photothermal effect did not compromise the GOx-like activity of MnO2/Cu2O, which guaranteed enough production of H2O2 for the sufficient generation of hydroxyl radicals. This work may open avenues for constructing MN-based multimodal treatment for the efficient therapy of skin cancers.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Peróxido de Hidrogênio , Terapia Fototérmica , Compostos de Manganês/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Óxidos/farmacologia , Radical Hidroxila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA