Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4828, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376678

RESUMO

Retinal fundus diseases can lead to irreversible visual impairment without timely diagnoses and appropriate treatments. Single disease-based deep learning algorithms had been developed for the detection of diabetic retinopathy, age-related macular degeneration, and glaucoma. Here, we developed a deep learning platform (DLP) capable of detecting multiple common referable fundus diseases and conditions (39 classes) by using 249,620 fundus images marked with 275,543 labels from heterogenous sources. Our DLP achieved a frequency-weighted average F1 score of 0.923, sensitivity of 0.978, specificity of 0.996 and area under the receiver operating characteristic curve (AUC) of 0.9984 for multi-label classification in the primary test dataset and reached the average level of retina specialists. External multihospital test, public data test and tele-reading application also showed high efficiency for multiple retinal diseases and conditions detection. These results indicate that our DLP can be applied for retinal fundus disease triage, especially in remote areas around the world.


Assuntos
Algoritmos , Aprendizado Profundo , Fundo de Olho , Redes Neurais de Computação , Fotografação/métodos , Doenças Retinianas/diagnóstico , Retinopatia Diabética/diagnóstico , Glaucoma/diagnóstico , Humanos , Degeneração Macular/diagnóstico , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA