Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(4): 047001, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25679903

RESUMO

We report a combination of Fe Kß x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx)2. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx)2. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx)2 (x=0.055) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.

2.
Phys Rev Lett ; 110(4): 047003, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166195

RESUMO

We report an Fe Kß x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca(1-x)RE(x)Fe(2)As(2) (RE = La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ∼ 0.9 µ(B) at T = 300 K to ∼ 0.45 µ(B) at T = 70 K. In the collapsed tetragonal phase of Nd- and Pr-doped samples (T<70 K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca(1-x)RE(x)Fe(2)As(2) (RE = Pr and Nd) exhibits a spin-state transition and provide direct evidence for a nonmagnetic Fe(2+) ion in the collapsed tetragonal phase; spin state as predicted by Yildirim. We argue that the gradual change of the spin state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hund's rule coupling.

3.
J Phys Condens Matter ; 33(7): 075804, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33142270

RESUMO

Comparing quantum oscillation measurements, dc magnetoresistance measurements, and Fermi surfaces obtained from LDA calculations, we argue that the metamagnetic transition of UPt3, which occurs at an applied field µ ◦ H M ∼ 20 T, coincides with a Lifshitz transition at which an open orbit on the band 2 hole-like Fermi surface becomes closed for one spin direction. At low field, proximity of the Fermi energy to this particular van Hove singularity may have implications for the superconducting pairing potential of UPt3. In our picture the magnetization comes from non-linear spin-splitting of the heavy fermion bands. In support of this, we show that the non-linear field dependence of a particular quantum oscillation frequency can be fitted by assuming that the corresponding extremal Fermi surface area is proportional to the magnetization. In addition, below H M , we find in our LDA calculations a new, non-central orbit on band 1, whose non-linear behaviour explains a field-dependent frequency recently observed in magnetoacoustic quantum oscillation measurements.

4.
Nature ; 425(6958): 595-9, 2003 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-14534580

RESUMO

Fermi-liquid theory (the standard model of metals) has been challenged by the discovery of anomalous properties in an increasingly large number of metals. The anomalies often occur near a quantum critical point--a continuous phase transition in the limit of absolute zero, typically between magnetically ordered and paramagnetic phases. Although not understood in detail, unusual behaviour in the vicinity of such quantum critical points was anticipated nearly three decades ago by theories going beyond the standard model. Here we report electrical resistivity measurements of the 3d metal MnSi, indicating an unexpected breakdown of the Fermi-liquid model--not in a narrow crossover region close to a quantum critical point where it is normally expected to fail, but over a wide region of the phase diagram near a first-order magnetic transition. In this regime, corrections to the Fermi-liquid model are expected to be small. The range in pressure, temperature and applied magnetic field over which we observe an anomalous temperature dependence of the electrical resistivity in MnSi is not consistent with the crossover behaviour widely seen in quantum critical systems. This may suggest the emergence of a well defined but enigmatic quantum phase of matter.

5.
Science ; 294(5541): 329-32, 2001 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11598292

RESUMO

The concept of quantum criticality is proving to be central to attempts to understand the physics of strongly correlated electrons. Here, we argue that observations on the itinerant metamagnet Sr3Ru2O7 represent good evidence for a new class of quantum critical point, arising when the critical end point terminating a line of first-order transitions is depressed toward zero temperature. This is of interest both in its own right and because of the convenience of having a quantum critical point for which the tuning parameter is the magnetic field. The relationship between the resultant critical fluctuations and novel behavior very near the critical field is discussed.

6.
J Phys Condens Matter ; 31(28): 285803, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30933932

RESUMO

We present the results of x-ray scattering and muon-spin relaxation ([Formula: see text]SR) measurements on the iron-pnictide compound FeCrAs. Polarized non-resonant magnetic x-ray scattering results reveal the 120° periodicity expected from the suggested three-fold symmetric, non-collinear antiferromagnetic structure. [Formula: see text]SR measurements indicate a magnetically ordered phase throughout the bulk of the material below [Formula: see text] K. There are signs of fluctuating magnetism in a narrow range of temperatures above [Formula: see text] involving low-energy excitations, while at temperatures well below [Formula: see text] behaviour characteristic of freezing of dynamics is observed, likely reflecting the effect of disorder in our polycrystalline sample. Using density functional theory we propose a distinct muon stopping site in this compound and assess the degree of distortion induced by the implanted muon.

7.
J Phys Condens Matter ; 25(38): 385601, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23989034

RESUMO

An unusual, non-metallic resistivity of the 111 iron-pnictide compound FeCrAs is shown to be relatively unchanged under pressures of up to 17 GPa. Combined with our previous finding that this non-metallic behaviour persists from at least 80 mK to 800 K, this shows that the non-metallic phase is exceptionally robust. Antiferromagnetic order, with a Néel temperature TN âˆ¼ 125 K at ambient pressure, is suppressed by pressure at a rate of 7.0 ± 0.4 K GPa(-1), falling to ∼50 K at 10 GPa. We conclude that the formation of a spin-density-wave gap at TN does not play an important role in the non-metallic resistivity of FeCrAs at low temperatures.

8.
Phys Rev Lett ; 101(23): 237205, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113590

RESUMO

Magnetic-field-induced changes of the Fermi surface play a central role in theories of the exotic quantum criticality of YbRh2Si2. We have carried out de Haas-van Alphen measurements in the magnetic-field range 8 T < or = H < or = 16 T, and directly observe field dependence of the extremal Fermi surface areas. Our data support the theory that a low-field "large" Fermi surface, including the Yb 4f quasihole, is increasingly spin split until a majority-spin branch undergoes a Lifshitz transition and disappears at H0 approximately 10 T, without requiring 4f localization at H0.

9.
Phys Rev Lett ; 96(2): 026401, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486603

RESUMO

We present new, high resolution Hall effect and magnetoresistance measurements across the metamagnetic transition in the heavy fermion compound CeRu2Si2 . The results, and ambiguities in the interpretation of de Haas-van Alphen data, force us to rethink the notion that the transition is accompanied by an abrupt f-electron localization. Instead, we explain our data assuming a continuous evolution of the Fermi surface, which sees one of the spin-split sheets of the heaviest surface shrink to a point.

10.
Phys Rev Lett ; 94(18): 186401, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15904385

RESUMO

We present de Haas-van Alphen oscillation measurements showing a strong spin dependence of the quasiparticle mass enhancement in the heavy fermion superconductor CeCoIn5 at high magnetic fields. There is evidence that the Fermi-liquid temperature dependence of the oscillations, embodied in the Lifshitz-Kosevich equation, is breaking down on the most strongly renormalized Fermi surface sheets.

11.
Nature ; 414(6862): 427-30, 2001 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-11719799

RESUMO

A century of research on magnetic phenomena had led to the view that the normal state of itinerant-electron ferromagnets such as Fe, Ni and Co could be described in terms of the standard model of the metallic state or its extension known as the nearly ferromagnetic Fermi liquid theory. In recent years, however, a large body of observations has accumulated from various complex intermetallic systems that raises the possibility that this assumption might be wrong. Here we examine this issue by means of high-precision measurements of the electrical transport and magnetic properties of pure ferromagnets-in particular, MnSi-in which the Curie temperature is tuned towards absolute zero by the application of hydrostatic pressure. With this method, it is possible for us to study the normal state over an extraordinarily large range of temperature of up to five orders of magnitude above the Curie temperature. Our results using MnSi reveal a particularly striking combination of properties-most notably a T3/2 power law for the resistivity-showing clearly that the normal state of this itinerant-electron ferromagnet cannot be described in terms of the standard model of metals.

12.
Phys Rev Lett ; 88(23): 236403, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12059384

RESUMO

We present a detailed de Haas-van Alphen effect study of the perovskite CaVO3, offering an unprecedented test of electronic structure calculations in a 3d transition metal oxide. Our experimental and calculated Fermi surfaces are in good agreement, but only if we ignore large orthorhombic distortions of the cubic perovskite structure. Subtle discrepancies may shed light on an apparent conflict between the low energy properties of CaVO3, which are those of a simple metal, and high energy probes which reveal strong correlations that place CaVO3 on the verge of a metal-insulator transition.

13.
Phys Rev Lett ; 86(12): 2661-4, 2001 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11290005

RESUMO

We report the results of low temperature transport, specific heat, and magnetization measurements on high quality single crystals of the bilayer perovskite Sr3Ru2O7, which is a close relative of the unconventional superconductor Sr2RuO4. Metamagnetism is observed, and transport and thermodynamic evidence for associated critical fluctuations is presented. These relatively unusual fluctuations might be pictured as variations in the Fermi surface topography itself.

14.
Phys Rev Lett ; 88(7): 076602, 2002 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-11863926

RESUMO

We report the results of transport measurements on SrRuO3, Sr3Ru2O7, and CaRuO3. In SrRuO3 and Sr3Ru2O7, our findings are consistent with the predictions of Fermi liquid theory, in contrast to previous reports based on samples with much shorter mean free paths. In CaRuO3, however, a T1.5 power law is seen in the resistivity in the high purity samples studied here. Our work gives concrete evidence that even the metallic state of the ruthenates is highly sensitive to disorder.

15.
Phys Rev Lett ; 89(16): 166402, 2002 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-12398740

RESUMO

We have measured the temperature and field dependence of the resistivity of the unconventional superconductor Sr2RuO4 at pressures up to 3.3 GPa. Using the Shubnikov-de Haas effect, we find that the Fermi surface sheet believed to be primarily responsible for superconductivity becomes more two-dimensional with increasing pressure, a surprising result that is, however, consistent with a recent model of orbital-dependent superconductivity in this system. Many-body enhancements and the superconducting transition temperature all fall gradually with increasing pressure, contrary to previous suggestions of a ferromagnetic quantum critical point at approximately 3 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA