Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Microbiol ; 18(7): 2185-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26626365

RESUMO

Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blinded clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3'- and 6'-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum).


Assuntos
Bifidobacterium animalis/metabolismo , Microbioma Gastrointestinal , Fórmulas Infantis/análise , Leite/química , Oligossacarídeos/metabolismo , Simbióticos/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bifidobacterium animalis/genética , Bifidobacterium animalis/crescimento & desenvolvimento , Bifidobacterium animalis/isolamento & purificação , Bovinos , Fezes/microbiologia , Feminino , Aditivos Alimentares/análise , Aditivos Alimentares/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Leite/metabolismo , Oligossacarídeos/análise
2.
Appl Environ Microbiol ; 78(8): 2613-22, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307308

RESUMO

Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log(10) cells/g feces was approximately 50%. The quantification limit was 5 to 6 log(10) groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR.


Assuntos
Carga Bacteriana/métodos , Bifidobacterium/isolamento & purificação , Chaperonina 60/genética , Fezes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Bifidobacterium/classificação , Bifidobacterium/genética , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Nat Biotechnol ; 35(11): 1069-1076, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967887

RESUMO

Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.


Assuntos
Fracionamento Químico/métodos , DNA/química , Fezes/química , Metagenômica , Bactérias/genética , Biologia Computacional , Humanos , Controle de Qualidade , Especificidade da Espécie
4.
Inflamm Bowel Dis ; 20(5): 861-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24651582

RESUMO

BACKGROUND: The gut microbiota is implicated in the pathogenesis of Crohn's disease (CD). Exclusive enteral nutrition (EEN) is a successful treatment, but its mode of action remains unknown. This study assessed serial changes in the fecal microbiota milieu during EEN. METHODS: Five fecal samples were collected from CD children: 4 during EEN (start, 15, 30, end EEN approximately 60 days) and the fifth on habitual diet. Two samples were collected from healthy control subjects. Fecal pH, bacterial metabolites, global microbial diversity abundance, composition stability, and quantitative changes of total and 7 major bacterial groups previously implicated in CD were measured. RESULTS: Overall, 68 samples were from 15 CD children and 40 from 21 control subjects. Fecal pH and total sulfide increased and butyric acid decreased during EEN (all P < 0.05). Global bacterial diversity abundance decreased (P < 0.05); a higher degree of microbiota composition stability was seen in control subjects than in CD children during EEN (at P ≤ 0.008). Faecalibacterium prausnitzii spp concentration significantly decreased after 30 days on EEN (P < 0.05). In patients who responded to EEN, the magnitude of the observed changes was greater and the concentration of Bacteroides/Prevotella group decreased (P < 0.05). All these changes reverted to pretreatment levels on free diet, and EEN microbiota diversity increased when the children returned to their free diet. CONCLUSIONS: EEN impacts on gut microbiota composition and changes fecal metabolic activity. It is difficult to infer a causative association between such changes and disease improvement, but the results do challenge the current perception of a protective role for F. prausnitzii in CD.


Assuntos
Biomarcadores/metabolismo , Doença de Crohn/prevenção & controle , Nutrição Enteral , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Metabolômica , Adolescente , Estudos de Casos e Controles , Criança , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Fezes/química , Feminino , Seguimentos , Trato Gastrointestinal/metabolismo , Humanos , Masculino , Prognóstico , Indução de Remissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA