Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Macromol Rapid Commun ; 45(8): e2300692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288674

RESUMO

Measurement of molecular weight is an integral part of macromolecular and polymer characterization which usually has limitations. Herein, this article presents the use of a bench-top 80 MHz Nuclear Magnetic Resonance (NMR) spectrometer for diffusion-ordered spectroscopy as a practical and rapid approach for the determination of molecular weight/size using a novel solvent and polymer-independent universal calibration.


Assuntos
Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Peso Molecular , Polímeros , Polímeros/química , Espectroscopia de Ressonância Magnética/métodos , Substâncias Macromoleculares/química , Difusão
2.
Angew Chem Int Ed Engl ; 62(38): e202308838, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37537139

RESUMO

An automated high throughput multidimensional reaction screening platform based on an inline Fourier-transform infrared spectroscopy is presented. By combining flow chemistry, machine automation and inline analysis, the platform is able to screen reactions in multidimensions (residence time, monomer concentration, degree of polymerization, reaction temperature and monomer conversion) rapidly and efficiently way. Kinetic data libraries associated with high data precision (absolute error <4 %), high reproducibility and high data density are built with ease from the platform. To test the method, we screened the reversible addition-fragmentation chain transfer polymerization of methyl acrylate in unmatched detail, and the ring opening metathesis polymerization of methyl-5-norbornene-2-carboxylate. The method we introduce is a key step in providing "big data" for data driven research in the future, and already at present allows for precise prediction of reaction outcomes within the high-dimensional chemical parameter space that is screened.

3.
Angew Chem Int Ed Engl ; 61(5): e202114536, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34861091

RESUMO

Diffusion-ordered NMR spectroscopy (DOSY) allows for accurate molecular weight calibration and determination that can be corrected for solvent influences. Polystyrene and poly(ethylene glycol) standards have been used to calibrate DOSY diffusion data for a variety of solvents, showing a high correlation of data when the bulk viscosity of the solvent is accounted for following the Stokes-Einstein equation. In this way, a type of universal calibration is introduced that allows for determinations of average molecular weight that are at least as accurate as those of traditional size-exclusion chromatography (SEC), if not better. Further, we demonstrate that DOSY calibrations can be used between laboratories, hence removing the need for individual calibration of setups as currently done.

4.
Macromol Rapid Commun ; 41(18): e2000071, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32691465

RESUMO

In nature, polypeptide-based materials are ubiquitous, yet their synthetic production is hampered by high cost, limited scalability, and often stringent reaction conditions. Herein an elegant approach is presented for N-carboxyanhydride ring opening polymerization (NCA ROP) of Nε-benzyloxycarbonyl-l-lysine (ZLL) and γ-benzyl-l-glutamate (BLG) NCA in continuous flow. The polymerization is initiated by primary amine initiators using N,N-dimethylformamide (DMF) as solvent. Carrying out the reaction in a silicon microflow reactor speeds up the rate of ROP (92% conversion in 40 min in flow as opposed to 6 h in batch) due to highly efficient permeation of CO2 through the reactor tubing. The polymerization strategy provides a facile, scale-up friendly alternative to traditional batch mode polymerization and has the capability of streamlining NCA ROP.


Assuntos
Anidridos , Peptídeos , Aminas , Polimerização
5.
Angew Chem Int Ed Engl ; 58(39): 13869-13873, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31287196

RESUMO

The separation of an oligo(methyl acrylate) distribution, obtained from reversible addition-fragmentation chain transfer (RAFT) polymerization, in a discrete (dispersity=1) oligomeric library (degree of polymerization between 1 and 22) is presented. The properties of this library in terms of diffusivity, glass transition temperature, and viscosity are determined, filling a significant knowledge gap associated with these materials. The obtained oligomer library is used to construct artificial oligomer distributions on demand. These artificial oligomer distributions are used to highlight the potential to tailor physical properties of a material, while concomitantly demonstrating the limitations associated with size-exclusion chromatography analysis of molecular weight and dispersity in particular.

6.
Angew Chem Int Ed Engl ; 58(10): 3183-3187, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30375134

RESUMO

A novel continuous flow system for automated high-throughput screening, autonomous optimization, and enhanced process control of polymerizations was developed. The computer-controlled platform comprises a flow reactor coupled to size exclusion chromatography (SEC). Molecular weight distributions are measured online and used by a machine-learning algorithm to self-optimize reactions towards a programmed molecular weight by dynamically varying reaction parameters (i.e. residence time, monomer concentration, and control agent/initiator concentration). The autonomous platform allows targeting of molecular weights in a reproducible manner with unprecedented accuracy (<2.5 % deviation from pre-selected goal) for both thermal and light-induced reactions. For the first time, polymers with predefined molecular weights can be custom made under optimal reaction conditions in an automated, high-throughput flow synthesis approach with outstanding reproducibility.

7.
Angew Chem Int Ed Engl ; 58(39): 13799-13802, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31424143

RESUMO

The first steps towards top-down morphology control in micellar self-assembly are introduced. Kinetically stable micelles are formed from block copolymers (BCPs) using continuous flow techniques by turbulent mixing of water with a THF solution of polymers. In this way, particle shape and size can be altered from spheres to ellipsoids solely via tuning of mixing parameters from a single BCP.

8.
Angew Chem Int Ed Engl ; 58(31): 10747-10751, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31020745

RESUMO

Functional precision polymers based on monodisperse oligo(N-substituted acrylamide)s and oligo(2-substituted-α-hydroxy acid)s have been synthesized. The discrete sequences originate from a direct translation of side-chain functionality sequences of a peptide with well-studied properties. The peptide was previously selected to solubilize the photosensitizer meta-tetra(hydroxyphenyl)chlorin. The resulting peptidomimetic formulation additives preserve the drug solubilization and release characteristics of the parent peptide. In some cases, superior properties are obtained, reaching up to 40 % higher payloads and 27-times faster initial drug release.

9.
Langmuir ; 34(10): 3244-3255, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29457981

RESUMO

Efficient and simple polymer conjugation reactions are critical for introducing functionalities on surfaces. For polymer surface grafting, postpolymerization modifications are often required, which can impose a significant synthetic hurdle. Here, we report two strategies that allow for reversible surface engineering via nitrone-mediated radical coupling (NMRC). Macroradicals stemming from the activation of polymers generated by copper-mediated radical polymerization are grafted via radical trapping with a surface-immobilized nitrone or a solution-borne nitrone. Since the product of NMRC coupling features an alkoxyamine linker, the grafting reactions can be reversed or chain insertions can be performed via nitroxide-mediated polymerization (NMP). Poly( n-butyl acrylate) ( Mn = 1570 g·mol-1, D̵ = 1.12) with a bromine terminus was reversibly grafted to planar silicon substrates or silica nanoparticles as successfully evidenced via X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry, and grazing angle attenuated total reflection Fourier-transform infrared spectroscopy (GAATR-FTIR). NMP chain insertions of styrene are evidenced via GAATR-FTIR. On silica nanoparticles, an NMRC grafting density of close to 0.21 chains per nm2 was determined by dynamic light scattering and thermogravimetric analysis. Concomitantly, a simple way to decorate particles with nitroxide radicals with precise control over the radical concentration is introduced. Silica microparticles and zinc oxide, barium titanate, and silicon nanoparticles were successfully functionalized.

10.
Macromol Rapid Commun ; 39(23): e1800678, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30387221

RESUMO

Functional synthetic polymers are frequently explored for their use in the biomedical field. To fulfill the stringent demands of biodegradability and compatibility, the materials need to be versatile and tunable. Post-modification is often considered challenging for well-known degradable materials like poly(lactic acid) because of their chemical inertness. In this work a procedure is proposed to produce densely functionalized polymer particles using oligomeric precursors synthesized via the Morita-Baylis-Hillman reaction. This allows for a variety of post-modification reactions to serve bio-conjugation or tuning of the material properties. The particles are subjected to basic media and found to be degradable. Furthermore, cytotoxicity tests confirm good biocompatibility. Finally, as a proof of concept to demonstrate the versatility of the particles, post-modification reactions are carried out through the formation of imines.


Assuntos
Polímeros/síntese química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Estrutura Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Polímeros/farmacologia , Propriedades de Superfície , Suínos
11.
Angew Chem Int Ed Engl ; 57(43): 14260-14264, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30168247

RESUMO

Polymers made from isoprene and styrene resemble an important class of synthetic macromolecules found in a wide range of everyday commodity products. Their synthesis is usually limited to radical emulsion or anionic polymerization. Herein, we report on ultrafast photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization of isoprene and styrene in a continuous-flow microreactor. The cooperative action of a high photoinitiation efficiency and use of elevated temperatures considerably reduces the reaction times to less than half an hour to give high monomer conversions, allowing for the first time polyisoprene to be yielded from controlled radical polymerization in high definition and reasonable reaction times. High chain-end fidelities are maintained and block copolymers were prepared including a polystyrene-block-polyisoprene-block-polystyrene (PS-b-PI-b-PS) triblock copolymer.

12.
Macromol Rapid Commun ; 38(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28940963

RESUMO

The organocatalyzed photo-atom transfer radical polymerization (photoATRP) using 10-phenylphenothiazine as catalyst is studied toward its use in methacrylic acid (MAA) polymerization and surface grafting. The organocatalyzed photoATRP of methyl methacrylate (MMA) is first optimized for continuous flow synthesis in order to assess the livingness of the polymerization. MMA can be polymerized in batch and in flow; however, conversions are limited by the loss of bromine functionality and hence high conversions have to be traded in with increasing dispersities. Also, MAA is polymerized successfully in continuous flow with similar limitations. Flow conditions are transferred to surface grafting from silanized silicon wafers. The presence of ATRP initiators after silanization is confirmed by secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Dense polymethacrylic acid brush films are successfully produced, which is not directly accessible via classical copper-mediated ATRP techniques.


Assuntos
Luz , Polimerização , Ácidos Polimetacrílicos/química , Catálise , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
13.
Biomacromolecules ; 17(8): 2562-71, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27345494

RESUMO

Conjugated polymers have attracted significant interest in the bioimaging field due to their excellent optical properties and biocompatibility. Tailor-made poly(p-phenylenevinylene) (PPV) conjugated polymer nanoparticles (NPs) are in here described. Two different nanoparticle systems using poly[2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a functional statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-MDMO-PPV), containing ester groups on the alkoxy side chains, were synthesized by combining miniemulsion and solvent evaporation processes. The hydrolysis of ester groups into carboxylic acid groups on the CPM-MDMO-PPV NPs surface allows for biomolecule conjugation. The NPs exhibited excellent optical properties with a high fluorescent brightness and photostability. The NPs were in vitro tested as potential fluorescent nanoprobes for studying cell populations within the central nervous system. The cell studies demonstrated biocompatibility and surface charge dependent cellular uptake of the NPs. This study highlights that PPV-derivative based particles are a promising bioimaging probe and can cater potential applications in the field of nanomedicine.


Assuntos
Astrócitos/metabolismo , Comunicação Celular , Endotélio Vascular/metabolismo , Microglia/metabolismo , Imagem Molecular/métodos , Nanopartículas/química , Polímeros/química , Astrócitos/citologia , Endotélio Vascular/citologia , Corantes Fluorescentes , Humanos , Microglia/citologia , Nanoporos , Propriedades de Superfície
14.
Biomacromolecules ; 17(12): 4086-4094, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27936730

RESUMO

Although micelles are commonly used for drug delivery purposes, their long-term fate is often unknown due to photobleaching of the fluorescent labels or the use of toxic materials. Here, we present a metal-free, nontoxic, nonbleaching, fluorescent micelle that can address these shortcomings. A simple, yet versatile, profluorescent micellar system, built from amphiphilic poly(p-phenylenevinylene) (PPV) block copolymers, for use in drug delivery applications is introduced. Polymer micelles made from PPV show excellent stability for up to 1 year and are successfully loaded with anticancer drugs (curcumin or doxorubicin) without requiring introduction of physical or chemical cross-links. The micelles are taken up efficiently by the cells, which triggers disassembly, releasing the encapsulated material. Disassembly of the micelles and drug release is conveniently monitored as fluorescence of the single polymer chains appear, which enables not only to monitor the release of the payload, but in principle also the fate of the polymer over longer periods of time.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/química , Micelas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Polímeros/química , Polivinil/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Humanos , Imagem Molecular/métodos , Células Tumorais Cultivadas
15.
Chemistry ; 21(52): 19176-85, 2015 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-26568272

RESUMO

Despite various studies on the polymerization of poly(p-phenylene vinylene) (PPV) through different precursor routes, detailed mechanistic knowledge on the individual reaction steps and intermediates is still incomplete. The present study aims to gain more insight into the radical polymerization of PPV through the Gilch route. The initial steps of the polymerization involve the formation of a p-quinodimethane intermediate, which spontaneously self-initiates through a dimerization process leading to the formation of diradical species; chain propagation ensues on both sides of the diradical or chain termination occurs by the formation of side products, such as [2.2]paracyclophanes. Furthermore, different p-quinodimethane systems were assessed with respect to the size of their aromatic core as well as the presence of heteroatoms in/on the conjugated system. The nature of the aromatic core and the specific substituents alter the electronic structure of the p-quinodimethane monomers, affecting the mechanism of polymerization. The diradical character of the monomers has been investigated with several advanced methodologies, such as spin-projected UHF, CASSCF, CASPT2, and DMRG calculations. It was shown that larger aromatic cores led to a higher diradical character in the monomers, which in turn is proposed to cause rapid initiation.

16.
Chem Sci ; 15(2): 639-643, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179536

RESUMO

A modest structural change of a ß-diketiminate-supported aluminium complex leads to dramatic differences in the reactivity towards cyclopentenone. While the bulkier complex efficiently executes Diels Alder transformations the smaller analogue performs unique polymerisation of this substrate. This observation appears to be unprecedented in the chemistry of Lewis acids and cyclic dienophiles as it represents a unique way to polymerise a functionalised olefin.

17.
React Chem Eng ; 8(9): 2170-2176, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38014415

RESUMO

Simplified electrochemically mediated atom transfer radical polymerization (seATRP) is a versatile technique for synthesizing polymers with precise control and complex architecture. Continuous-flow seATRP has recently been realized by using a sonicated microreactor but still faces limitations such as relatively low conversion and difficulties in synthesizing polymers with high molecular weight. Herein, a novel multi-reactor setup is demonstrated. By tuning the currents applied to different reaction stages in the setup, 90% conversion can be achieved while maintaining relatively low dispersity (<1.35). Meanwhile, the unique design enables a wider processing window for sonication due to greater viscous attenuation in the second reactor, thus largely addressing the problem associated with high viscosity during the synthesis of high molecular weight polymers. The developed setup also offers an alternative strategy for future scale-up of continuous-flow seATRP.

18.
ACS Appl Mater Interfaces ; 15(8): 11141-11149, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799738

RESUMO

The functionalization of emulsion-templated porous polymers (polyHIPEs) utilizing modern and efficient chemistries is an important avenue for tailoring the properties of these scaffolds for specific and specialized applications. Herein, tetrazole photoclick chemistry is utilized for the efficient functionalization of polyHIPEs synthesized from various monomer systems and polymerization chemistries. Using both radical polymerization and thiol-ene polymerization, polyHIPEs with well-defined, interconnected open-cell morphologies are synthesized with tetrazole concentrations ranging from 0 to 5 w/v %, with the pore diameters ranging from 3 to 24 µm. Analyzed by fluorescence spectroscopy, FTIR spectroscopy, and confocal microscopy, spatially controlled functionalization to generate photopatterned fluorescent polyHIPEs is demonstrated via the reaction with residual acrylate and thiol groups. In addition, the scaffolds can be readily functionalized with external dipolarophiles such as acrylates to incorporate a functionality onto the polyHIPE surface. With many functional tetrazoles also reported in the literature, a PEG-tetrazole is also used to explore the photoinduced functionalization of polyHIPEs possessing tunable ratios of thiol and acrylate groups, and the effect on fluorescence, wettability, and biocompatibility is analyzed. Overall, the reaction is shown to be a broadly applicable tool for polyHIPE functionalization with many avenues for further development toward specific applications.

19.
Chem Sci ; 14(32): 8466-8473, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592997

RESUMO

A one-pass continuous flow strategy to form block copolymer nanoaggregates directly from monomers is presented. A key development towards such a sophisticated continuous flow setup is a significant improvement in continuous flow dialysis. Often impurities or solvent residues from polymerizations must be removed before block extensions or nanoaggregate formation can be carried out, typically disrupting the workflow. Hence, inline purification systems are required for fully continuous operation and eventual high throughput operation. An inline dialysis purification system is developed and exemplified for amphiphilic block copolymer synthesis from thermal and photoiniferter reversible addition fragmentation chain transfer (RAFT) polymerization. The inline dialysis system is found to be significantly faster than conventional batch dialysis and the kinetics are found to be very predictable with a diffusion velocity coefficient of 4.1 × 10-4 s-1. This is at least 4-5 times faster than conventional dialysis. Moreover, the newly developed setup uses only 57 mL of solvent for purification per gram of polymer, again reducing the required amount by almost an order of magnitude compared to conventional methods. Methyl methacrylate (MMA) or butyl acrylate (BA) was polymerized in a traditional flow reactor as the first block via RAFT polymerization, followed by a 'dialysis loop', which contains a custom-built inline dialysis device. Clearance of residual monomers is monitored via in-line NMR. The purified reaction mixture can then be chain extended in a second reactor stage to obtain block copolymers using poly(ethylene glycol) methyl ether acrylate (PEGMEA) as the second monomer. In the last step, nano-objects are created, again from flow processes. The process is highly tuneable, showing for the chosen model system a variation in nanoaggregate size from 34 nm to 188 nm.

20.
Chem Sci ; 13(42): 12326-12331, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349267

RESUMO

Continuous-flow simplified electrochemically mediated atom transfer radical polymerization (seATRP) was achieved for the first time without supporting electrolytes (self-supported) using a novel sonicated tubular microreactor. Polymerizations of different acrylic monomers were carried out under different applied currents. The reaction was fast with 75% conversion achieved at ambient temperature in less than 27 minutes. Results also showed good evolution of molecular weight and maintained narrow molecular weight distribution. The reaction rate can be further manipulated by tuning the applied current. Sonication under proper conditions was found to be able to significantly improve both reaction rate and controllability. Self-supported reactions also enable more environmentally friendly and cost-effective operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA