RESUMO
Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10-8): rs781716 (P = 4.71 × 10-9; odds ratio [OR] = 2.44) intronic to SPRY3; rs6127972 (P = 4.41 × 10-8; OR = 2.17) intronic to BMP7; rs62590971 (P = 6.22 × 10-9; OR = 0.34), located ~ 155 kb upstream from TGIF2LX; and rs2522623, rs2573826, and rs2754857, all intronic to PCDH11X (P = 1.76 × 10-8, OR = 0.45; P = 3.31 × 10-8, OR = 0.45; P = 1.09 × 10-8, OR = 0.44, respectively). We performed a replication study of these variants using an independent non-Hispanic white sample of 194 unrelated mNCS cases and 333 unaffected controls; only the association for rs6127972 (P = 0.004, OR = 1.45; meta-analysis P = 1.27 × 10-8, OR = 1.74) was replicated. Our meta-analysis examining single nucleotide polymorphisms common to both our mNCS and sNCS studies showed the strongest association for rs6127972 (P = 1.16 × 10-6). Our imputation analysis identified a linkage disequilibrium block encompassing rs6127972, which contained an enhancer overlapping a CTCF transcription factor binding site (chr20:55,798,821-55,798,917) that was significantly hypomethylated in mesenchymal stem cells derived from fused metopic compared to open sutures from the same probands. This study provides additional insights into genetic factors in midline CS.
Assuntos
Proteína Morfogenética Óssea 7/genética , Craniossinostoses/genética , Variação Genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Metilação de DNA , Genes Reporter , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Íntrons/genética , Desequilíbrio de Ligação , Regiões Promotoras Genéticas/genética , Fatores de RiscoRESUMO
Genome-wide association studies (GWASs) are unraveling the genetics of adult brain neuroanatomy as measured by cross-sectional anatomic magnetic resonance imaging (aMRI). However, the genetic mechanisms that shape childhood brain development are, as yet, largely unexplored. In this study we identify common genetic variants associated with childhood brain development as defined by longitudinal aMRI. Genome-wide single nucleotide polymorphism (SNP) data were determined in two cohorts: one enriched for attention-deficit/hyperactivity disorder (ADHD) (LONG cohort: 458 participants; 119 with ADHD) and the other from a population-based cohort (Generation R: 257 participants). The growth of the brain's major regions (cerebral cortex, white matter, basal ganglia, and cerebellum) and one region of interest (the right lateral prefrontal cortex) were defined on all individuals from two aMRIs, and a GWAS and a pathway analysis were performed. In addition, association between polygenic risk for ADHD and brain growth was determined for the LONG cohort. For white matter growth, GWAS meta-analysis identified a genome-wide significant intergenic SNP (rs12386571, P = 9.09 × 10-9 ), near AKR1B10. This gene is part of the aldo-keto reductase superfamily and shows neural expression. No enrichment of neural pathways was detected and polygenic risk for ADHD was not associated with the brain growth phenotypes in the LONG cohort that was enriched for the diagnosis of ADHD. The study illustrates the use of a novel brain growth phenotype defined in vivo for further study.
Assuntos
Encéfalo/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Substância Branca/patologiaRESUMO
Craniosynostosis presents either as a nonsyndromic congenital anomaly or as a finding in nearly 200 genetic syndromes. Our previous genome-wide association study of sagittal nonsyndromic craniosynostosis identified associations with variants downstream from BMP2 and intronic in BBS9. Because no coding variants in BMP2 were identified, we hypothesized that conserved non-coding regulatory elements may alter BMP2 expression. In order to identify and characterize noncoding regulatory elements near BMP2, two conserved noncoding regions near the associated region on chromosome 20 were tested for regulatory activity with a Renilla luciferase assay. For a 711 base pair noncoding fragment encompassing the most strongly associated variant, rs1884302, the luciferase assay showed that the risk allele (C) of rs1884302 drives higher expression of the reporter than the common allele (T). When this same DNA fragment was tested in zebrafish transgenesis studies, a strikingly different expression pattern of the green fluorescent reporter was observed depending on whether the transgenic fish had the risk (C) or the common (T) allele at rs1884302. The in vitro results suggest that altered BMP2 regulatory function at rs1884302 may contribute to the etiology of sagittal nonsyndromic craniosynostosis. The in vivo results indicate that differences in regulatory activity depend on the presence of a C or T allele at rs1884302.
Assuntos
Proteína Morfogenética Óssea 2/genética , Anormalidades Congênitas/genética , Craniossinostoses/genética , Predisposição Genética para Doença , Alelos , Animais , Animais Geneticamente Modificados/genética , Anormalidades Congênitas/fisiopatologia , Sequência Conservada , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética , Peixe-Zebra/genéticaRESUMO
Craniosynostosis (CS) is a major birth defect resulting from premature fusion of cranial sutures. Nonsyndromic CS occurs more frequently than syndromic CS, with sagittal nonsyndromic craniosynostosis (sNCS) presenting as the most common CS phenotype. Previous genome-wide association and targeted sequencing analyses of sNCS have identified multiple associated loci, with the strongest association on chromosome 20. Herein, we report the first whole-genome sequencing study of sNCS using 63 proband-parent trios. Sequencing data for these trios were analyzed using the transmission disequilibrium test (TDT) and rare variant TDT (rvTDT) to identify high-risk rare gene variants. Sequencing data were also examined for copy number variants (CNVs) and de novo variants. TDT analysis identified a highly significant locus at 20p12.3, localized to the intergenic region between BMP2 and the noncoding RNA gene LINC01428. Three variants (rs6054763, rs6054764, rs932517) were identified as potential causal variants due to their probability of being transcription factor binding sites, deleterious combined annotation dependent depletion scores, and high minor allele enrichment in probands. Morphometric analysis of cranial vault shape in an unaffected cohort validated the effect of these three single nucleotide variants (SNVs) on dolichocephaly. No genome-wide significant rare variants, de novo loci, or CNVs were identified. Future efforts to identify risk variants for sNCS should include sequencing of larger and more diverse population samples and increased omics analyses, such as RNA-seq and ATAC-seq.
Assuntos
Craniossinostoses , Estudo de Associação Genômica Ampla , Humanos , Alelos , Proteína Morfogenética Óssea 2/genética , Craniossinostoses/genética , DNA Intergênico/genética , Sequenciamento Completo do Genoma , RNA Longo não CodificanteRESUMO
Purpose: The etiopathogenesis of coronal nonsyndromic craniosynostosis (cNCS), a congenital condition defined by premature fusion of 1 or both coronal sutures, remains largely unknown. Methods: We conducted the largest genome-wide association study of cNCS followed by replication, fine mapping, and functional validation of the most significant region using zebrafish animal model. Results: Genome-wide association study identified 6 independent genome-wide-significant risk alleles, 4 on chromosome 7q21.3 SEM1-DLX5-DLX6 locus, and their combination conferred over 7-fold increased risk of cNCS. The top variants were replicated in an independent cohort and showed pleiotropic effects on brain and facial morphology and bone mineral density. Fine mapping of 7q21.3 identified a craniofacial transcriptional enhancer (eDlx36) within the linkage region of the top variant (rs4727341; odds ratio [95% confidence interval], 0.48[0.39-0.59]; P = 1.2E-12) that was located in SEM1 intron and enriched in 4 rare risk variants. In zebrafish, the activity of the transfected human eDlx36 enhancer was observed in the frontonasal prominence and calvaria during skull development and was reduced when the 4 rare risk variants were introduced into the sequence. Conclusion: Our findings support a polygenic nature of cNCS risk and functional role of craniofacial enhancers in cNCS susceptibility with potential broader implications for bone health.
RESUMO
OBJECTIVE: Custom genotyping of markers in families with familial idiopathic scoliosis were used to fine-map candidate regions on chromosomes 9 and 16 in order to identify candidate genes that contribute to this disorder and prioritize them for next-generation sequence analysis. METHODS: Candidate regions on 9q and 16p-16q, previously identified as linked to familial idiopathic scoliosis in a study of 202 families, were genotyped with a high-density map of single nucleotide polymorphisms. Tests of linkage for fine-mapping and intra-familial tests of association, including tiled regression, were performed on scoliosis as both a qualitative and quantitative trait. RESULTS AND CONCLUSIONS: Nominally significant linkage results were found for markers in both candidate regions. Results from intra-familial tests of association and tiled regression corroborated the linkage findings and identified possible candidate genes suitable for follow-up with next-generation sequencing in these same families. Candidate genes that met our prioritization criteria included FAM129B and CERCAM on chromosome 9 and SYT1, GNAO1, and CDH3 on chromosome 16.
Assuntos
Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 9/genética , Ligação Genética , Escoliose/genética , Adulto , Mapeamento Cromossômico/métodos , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.
Assuntos
Craniossinostoses , Estudo de Associação Genômica Ampla , Criança , Humanos , Animais , Camundongos , Crânio/diagnóstico por imagem , Craniossinostoses/genética , Ossos Faciais , Encéfalo/diagnóstico por imagemRESUMO
Attention-deficit/hyperactivity disorder (ADHD) is associated with a wide array of neural and cognitive features, and other psychiatric disorders, identified mainly through cross-sectional associations studies. However, it is unclear if the disorder is causally associated with these neurocognitive features. Here, we applied a two-sample bidirectional Mendelian randomization (MR) study to summary GWAS data to explore the presence and direction of a causal effect between ADHD and a range of neurocognitive features and other psychiatric disorders. The inverse variance weighted method was used in the main analysis, and two MR methods (MR-Egger, weighted median) were used for robustness checks. We found that genetic risk for ADHD was causally associated with a decreased area of lateral orbitofrontal cortex. Conversely, we found that brain volume and some features of intrinsic functional connectivity had causal effects on ADHD risk. Bidirectional causal links were found between ADHD and adult general intelligence, as well as depression and autistic spectrum disorders. Such work highlights the important ties between ADHD and general cognitive ability, and suggest some neural features, previously merely associated with the disorder, may play a causal role in its pathogenesis.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos Transversais , Humanos , Inteligência/genética , Análise da Randomização MendelianaRESUMO
Ulnar-mammary syndrome (UMS) is a rare, autosomal dominant disorder characterized by anomalies affecting the limbs, apocrine glands, dentition, and genital development. This syndrome is caused by haploinsufficiency in the T-Box3 gene (TBX3), with considerable variability in the clinical phenotype being observed even within families. We describe a one-year-old female with unilateral, postaxial polydactyly, and bilateral fifth fingernail duplication. Next-generation sequencing revealed a novel, likely pathogenic, variant predicted to affect the canonical splice site in intron 3 of the TBX3 gene (c.804 + 1G > A, IVS3 + 1G > A). This variant was inherited from the proband's father who was also diagnosed with UMS with the additional clinical finding of congenital, sagittal craniosynostosis. Subsequent whole genome analysis in the proband's father detected a variant in the EFNA4 gene (c.178C > T, p.His60Tyr), which has only been reported to be associated with sagittal craniosynostosis in one patient prior to this report but reported in other cranial suture synostosis. The findings in this family extend the genotypic spectrum of UMS, as well as the phenotypic spectrum of EFNA4-related craniosynostosis.
Assuntos
Anormalidades Múltiplas , Doenças Mamárias , Craniossinostoses , Anormalidades Múltiplas/genética , Doenças Mamárias/genética , Craniossinostoses/genética , Feminino , Humanos , Proteínas com Domínio T/genética , Ulna/anormalidadesRESUMO
Craniosynostosis (CS) is a major birth defect in which one or more skull sutures fuse prematurely. We previously performed a genome-wide association study (GWAS) for sagittal non-syndromic CS (sNCS), identifying associations downstream from BMP2 on 20p12.3 and intronic to BBS9 on 7p14.3; analyses of imputed variants in DLG1 on 3q29 were also genome-wide significant. We followed this work with a GWAS for metopic non-syndromic NCS (mNCS), discovering a significant association intronic to BMP7 on 20q13.31. In the current study, we sequenced the associated regions on 3q29, 7p14.3, and 20p12.3, including two candidate genes (BMP2 and BMPER) near some of these regions in 83 sNCS child-parent trios, and sequenced regions on 7p14.3 and 20q13.2-q13.32 in 80 mNCS child-parent trios. These child-parent trios were selected from the original GWAS cohorts if the probands carried at least one copy of the top associated GWAS variant (rs1884302 C allele for sNCS; rs6127972 T allele for mNCS). Many of the variants sequenced in these targeted regions are strongly predicted to be within binding sites for transcription factors involved in craniofacial development or bone morphogenesis. Variants enriched in more than one trio and predicted to be damaging to gene function are prioritized for functional studies.
Assuntos
Craniossinostoses , Estudo de Associação Genômica Ampla , Alelos , Proteínas de Transporte/genética , Craniossinostoses/genética , HumanosRESUMO
The triple curve pattern (three lateral curvatures of equal severity) has been recognized as a distinct and unique clinical subtype of scoliosis. As part of a large study of familial idiopathic scoliosis (FIS), a subset of five families with a triple curve pattern (at least one member of each family having a triple curve) was evaluated to determine if this curve pattern was linked to any of the markers previously genotyped as part of the STRP-based previous linkage screen. Model independent linkage analysis (SIBPAL, v4.5) of the initial genomic screen identified candidate regions on chromosomes 6 and 10 when FIS was analyzed both as qualitative and quantitative traits in single- and multipoint linkage analyses. Additional fine mapping analyses of this subgroup with SNPs corroborated the findings in these regions (P < 0.001). These regions have been previously linked to FIS, however, this is the first time these regions have been implicated in a clinically well-defined subgroup and may suggest a unique genetic etiology for the formation of a triple curve.
Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença , Escoliose/genética , Escoliose/patologia , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 6/genética , Família , Ligação Genética , Marcadores Genéticos , Testes Genéticos , Genoma Humano/genética , Humanos , Repetições de Microssatélites/genética , Modelos Genéticos , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Radiografia , Escoliose/diagnóstico por imagem , Coluna Vertebral/anormalidades , Coluna Vertebral/diagnóstico por imagemRESUMO
Craniosynostosis (CS), the premature fusion of one or more cranial sutures, is a relatively common congenital anomaly, occurring in 3-5 per 10,000 live births. Nonsyndromic CS (NCS) accounts for up to 80% of all CS cases, yet the genetic factors contributing to the disorder remain largely unknown. The RUNX2 gene, encoding a transcription factor critical for bone and skull development, is a well known CS candidate gene, as copy number variations of this gene locus have been found in patients with syndromic craniosynostosis. In the present study, we aimed to characterize RUNX2 to better understand its role in the genetic etiology and in the molecular mechanisms underlying midline suture ossification in NCS. We report four nonsynonymous variants, one intronic variant and one 18 bp in-frame deletion in RUNX2 not found in our study control population. Significant difference in allele frequency (AF) for the deletion variant RUNX2 p.Ala84-Ala89del (ClinVar 257,095; dbSNP rs11498192) was observed in our sagittal NCS cohort when compared to the general population (P = 1.28 × 10-6), suggesting a possible role in the etiology of NCS. Dual-luciferase assays showed that three of four tested RUNX2 variants conferred a gain-of-function effect on RUNX2, further suggesting their putative pathogenicity in the tested NCS cases. Downregulation of RUNX2 expression was observed in prematurely ossified midline sutures. Metopic sites showed significant downregulation of promoter 1-specific isoforms compared to sagittal sites. Suture-derived mesenchymal stromal cells showed an increased expression of RUNX2 over matched unfused suture derived cells. This demonstrates that RUNX2, and particularly the distal promoter 1-isoform group, are overexpressed in the osteogenic precursors within the pathological suture sites.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Craniossinostoses , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Suturas Cranianas , Craniossinostoses/genética , Variações do Número de Cópias de DNA , Mutação com Ganho de Função , HumanosRESUMO
Because of genetic heterogeneity present in idiopathic scoliosis, we previously defined clinical subsets (a priori) from a sample of families with idiopathic scoliosis to find genes involved with spinal curvature. Previous genome-wide linkage analysis of seven families with at least two individuals with kyphoscoliosis found linkage (P-value = 0.002) in a 3.5-Mb region on 5p13.3 containing only three known genes, IRX1, IRX2, and IRX4 In this study, the exons of IRX1, IRX2, and IRX4, the conserved noncoding elements in the region, and the exons of a nonprotein coding RNA, LOC285577, were sequenced. No functional sequence variants were identified. An intrafamilial test of association found several associated noncoding single nucleotide variants. The strongest association was with rs12517904 (P = 0.00004), located 6.5 kb downstream from IRX1 In one family, the genotypes of nine variants differed from the reference allele in all individuals with kyphoscoliosis, and two of three individuals with scoliosis, but did not differ from the reference allele in all other genotyped individuals. One of these variants, rs117273909, was located in a conserved noncoding region that functions as an enhancer in mice. To test whether the variant allele at rs117273909 had an effect on enhancer activity, zebrafish transgenesis was performed with overlapping fragments of 198 and 687 bp containing either the wild type or the variant allele. Our data suggests that this region acts as a regulatory element; however, its size and target gene(s) need to be identified to determine its role in idiopathic scoliosis.
Assuntos
Cromossomos Humanos Par 5 , Sequência Conservada , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Cifose/genética , Escoliose/genética , Animais , Animais Geneticamente Modificados , Éxons , Expressão Gênica , Genes Reporter , Estudos de Associação Genética , Genótipo , Proteínas de Homeodomínio/química , Humanos , Polimorfismo de Nucleotídeo Único , Peixe-ZebraRESUMO
In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.
RESUMO
BACKGROUND: By analyzing a "pseudo-trait," a trait not linked or associated with any of the markers tested, the distribution of the test statistic under the null hypothesis can provide the critical value for the appropriate percentile of the distribution. In addition, the anecdotal observation that p-values tend to be more significant near the telomeres was investigated. RESULTS: The applied pseudo-trait (APT) method was applied to the Affymetrix and Illumina SNPs in the Collaborative Study on the Genetics of Alcoholism dataset to determine appropriate critical values for regression of offspring on mid-parent (ROMP) and Haseman-Elston association and linkage analyses, investigating the occurrence of type I errors in different chromosomal locations, and the extent to which the critical values obtained depend on the type of pseudo-trait used. CONCLUSION: On average, the 5 percentile critical values obtained for this study were less than the expected 0.05. The distribution of p-values does not seem to depend on chromosomal position for ROMP association analysis methods, but does in some cases for Haseman-Elston linkage analysis. Results vary with different pseudo-traits.
Assuntos
Alcoolismo/genética , Mapeamento Cromossômico/métodos , Cromossomos Humanos/genética , Comportamento Cooperativo , Bases de Dados Genéticas , Característica Quantitativa Herdável , Genoma Humano/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Projetos de PesquisaRESUMO
STUDY DESIGN: A hypothesis-driven study was conducted in a familial cohort to determine the potential association between variants within the TBX6 gene and Familial Idiopathic Scoliosis (FIS). OBJECTIVE: To determine if variants within exons of the TBX6 gene segregate with the FIS phenotype within a sample of families with FIS. SUMMARY OF BACKGROUND DATA: Idiopathic Scoliosis (IS) is a structural curvature of the spine whose underlying genetic etiology has not been established. IS has been reported to occur at a higher rate than expected in family members of individuals with congenital scoliosis (CS), suggesting that the two diseases might have a shared etiology. The TBX6 gene on chromosome 16p, essential to somite development, has been associated with CS in a Chinese population. Previous studies have identified linkage to this locus in families with FIS, and specifically with rs8060511, located in an intron of the TBX6 gene. METHODS: Parent-offspring trios from 11 families (13 trios, 42 individuals) with FIS were selected for Sanger sequencing of the TBX6 gene. Trios were selected from a large population of families with FIS in which a genome-wide scan had resulted in linkage to 16p. RESULTS: Sequencing analyses of the subset of families resulted in the identification of five coding variants. Three of the five variants were novel; the remaining two variants were previously characterized and account for 90% of the observed variants in these trios. In all cases, there was no correlation between transmission of the TBX6 variant allele and FIS phenotype. However, an analysis of regulatory markers in osteoblasts showed that rs8060511 is in a putative enhancer element. CONCLUSIONS: Although this study did not identify any TBX6 coding variants that segregate with FIS, we identified a variant that is located in a potential TBX6 enhancer element. Therefore, further investigation of the region is needed.
RESUMO
Several different approaches can be used to examine generational and temporal trends in family studies. The measurement of offspring and parents can be made over a short period of time with parents and offspring having quite different ages, or measurements can be made at the same ages but with decades between parent and offspring measures. A third approach, used in the Framingham Heart Study, has repeated examinations across a broad range of age and time, and provides a unique opportunity to compare these approaches. Parents and offspring were matched both on (year of exam) and on age. Heritability estimates for systolic blood pressure, body mass index, height, weight, cholesterol, and glucose were obtained by regressing offspring on midparent values with and without adjustment for age. Higher estimates of heritability were obtained for age-matched than for year-of-exam-matched data for all traits considered. For most traits, estimates of the heritability of the change over time (slope) of the trait were near zero. These results suggest that the optimal design to identify genetic effects in traits with large age-related effects may be to measure parents and offspring at similar ages and not to rely on age-adjustment or longitudinal measures to account for these temporal effects.
Assuntos
Envelhecimento/genética , Característica Quantitativa Herdável , Filhos Adultos , Fatores Etários , Envelhecimento/sangue , Glicemia/genética , Pressão Sanguínea/genética , Estatura/genética , Índice de Massa Corporal , Peso Corporal/genética , Colesterol/sangue , Intervalos de Confiança , Feminino , Humanos , Funções Verossimilhança , Estudos Longitudinais , Masculino , Análise por Pareamento , Pais , Irmãos , TempoRESUMO
STUDY DESIGN: Model-independent linkage analysis and tests of association were performed for 22 single nucleotide polymorphisms in the CHD7 gene in 244 families of European descent with familial idiopathic scoliosis (FIS). OBJECTIVE: To replicate an association between FIS and the CHD7 gene on 8q12.2 in an independent sample of families of European descent. SUMMARY OF BACKGROUND DATA: The CHD7 gene on chromosome 8, responsible for the CHARGE syndrome, was previously associated with FIS in an independent study that included 52 families of European descent. METHODS: Model-independent linkage analysis and intrafamilial tests of association were performed on the degree of lateral curvature considered as a qualitative trait (with thresholds of ≥10°, ≥15°, ≥20°, and ≥30°) and as a quantitative trait (degree of lateral curvature). Results from the tests of associations from this study and the previous study were combined in a weighted meta-analysis. RESULTS: No significant results (P < 0.01) were found for linkage analysis or tests of association between genetic variants of the CHD7 and FIS in this study, failing to replicate the findings from the previous study. Furthermore, no significant results (P < 0.01) were found from meta-analysis of the results from the tests of association from this sample and from the previous sample. CONCLUSION: No association between the 22 genotyped single nucleotide polymorphisms in the CHD7 gene and FIS within this study sample was found, failing to replicate the earlier findings. Further investigation of the CHD7 gene and its potential association to FIS may be required. LEVEL OF EVIDENCE: N/A.
Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Escoliose/genética , Europa (Continente) , Saúde da Família , Feminino , Frequência do Gene , Predisposição Genética para Doença/etnologia , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Escoliose/etnologia , População Branca/genéticaRESUMO
Sagittal craniosynostosis is the most common form of craniosynostosis, affecting approximately one in 5,000 newborns. We conducted, to our knowledge, the first genome-wide association study for nonsyndromic sagittal craniosynostosis (sNSC) using 130 non-Hispanic case-parent trios of European ancestry (NHW). We found robust associations in a 120-kb region downstream of BMP2 flanked by rs1884302 (P = 1.13 × 10(-14), odds ratio (OR) = 4.58) and rs6140226 (P = 3.40 × 10(-11), OR = 0.24) and within a 167-kb region of BBS9 between rs10262453 (P = 1.61 × 10(-10), OR = 0.19) and rs17724206 (P = 1.50 × 10(-8), OR = 0.22). We replicated the associations to both loci (rs1884302, P = 4.39 × 10(-31) and rs10262453, P = 3.50 × 10(-14)) in an independent NHW population of 172 unrelated probands with sNSC and 548 controls. Both BMP2 and BBS9 are genes with roles in skeletal development that warrant functional studies to further understand the etiology of sNSC.
Assuntos
Proteína Morfogenética Óssea 2/genética , Craniossinostoses/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas de Neoplasias/genética , Estudos de Coortes , Proteínas do Citoesqueleto , Humanos , Recém-Nascido , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , População Branca/genéticaRESUMO
Family-based study designs are again becoming popular as new next-generation sequencing technologies make whole-exome and whole-genome sequencing projects economically and temporally feasible. Here we evaluate the statistical properties of linkage analyses and family-based tests of association for the Genetic Analysis Workshop 17 mini-exome sequence data. Based on our results, the linkage methods using relative pairs or nuclear families had low power, with the best results coming from variance components linkage analysis in nuclear families and Elston-Stewart model-based linkage analysis in extended pedigrees. For family-based tests of association, both ASSOC and ROMP performed well for genes with large effects, but ROMP had the advantage of not requiring parental genotypes in the analysis. For the linkage analyses we conclude that genome-wide significance levels appear to control type I error well but that "suggestive" significance levels do not. Methods that make use of the extended pedigrees are well powered to detect major loci segregating in the families even when there is substantial genetic heterogeneity and the trait is mainly polygenic. However, large numbers of such pedigrees will be necessary to detect all major loci. The family-based tests of association found the same major loci as the linkage analyses and detected low-frequency loci with moderate effect sizes, but control of type I error was not as stringent.