Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(23): 11187-11194, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31085651

RESUMO

Chemical production is set to become the single largest driver of global oil consumption by 2030. To reduce oil consumption and resulting greenhouse gas (GHG) emissions, carbon dioxide can be captured from stacks or air and utilized as alternative carbon source for chemicals. Here, we show that carbon capture and utilization (CCU) has the technical potential to decouple chemical production from fossil resources, reducing annual GHG emissions by up to 3.5 Gt CO2-eq in 2030. Exploiting this potential, however, requires more than 18.1 PWh of low-carbon electricity, corresponding to 55% of the projected global electricity production in 2030. Most large-scale CCU technologies are found to be less efficient in reducing GHG emissions per unit low-carbon electricity when benchmarked to power-to-X efficiencies reported for other large-scale applications including electro-mobility (e-mobility) and heat pumps. Once and where these other demands are satisfied, CCU in the chemical industry could efficiently contribute to climate change mitigation.

2.
Faraday Discuss ; 230: 227-246, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33889872

RESUMO

Polymer production is a major source of greenhouse gas (GHG) emissions. To reduce GHG emissions, the polymer industry needs to shift towards renewable carbon feedstocks such as biomass and CO2. Both feedstocks have been shown to reduce GHG emissions in polymer production, however often at the expense of increased utilization of the limited resources biomass and renewable electricity. Here, we explore synergetic effects between biomass and CO2 utilization to reduce both GHG emissions and renewable resource use. For this purpose, we use life cycle assessment (LCA) to quantify the environmental benefits of the combined utilization of biomass and CO2 in the polyurethane supply chain. Our results show that the combined utilization reduces GHG emissions by 13% more than the individual utilization of either biomass or CO2. The synergies between bio- and CO2-based production save about 25% of the limited resources biomass and renewable electricity. The synergistic use of biomass and CO2 also reduces burden shifting from climate change to other environmental impacts, e.g., metal depletion or land use. Our results show how the combined utilization of biomass and CO2 in polymer supply chains reduces both GHG emissions and resource use by exploiting synergies between the feedstocks.


Assuntos
Dióxido de Carbono , Carbono , Biomassa , Mudança Climática , Polímeros
3.
Environ Sci Technol ; 50(23): 12575-12583, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934267

RESUMO

Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or general equilibrium models. Such models are useful for integrating market effects into CLCA, but also have well-recognized limitations such as the poor granularity of the sectoral definition and the assumption of perfect oversight by all economic agents. Building on the Rectangular-Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to market imperfections and information asymmetry in a stochastic setting. In a case study on rice production, we demonstrate that the proposed approach allows modeling of complex production technology mixes and their expected environmental outcomes under uncertainty, at a high level of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal decisions by economic agents significantly affects technology mixes and associated greenhouse gas (GHG) emissions of the system under study. The case study also shows the model's ability to determine both the average and marginal environmental impacts of a product in response to changes in the quantity of final demand.


Assuntos
Modelos Teóricos , Tecnologia , Comportamento de Escolha , Meio Ambiente , Efeito Estufa , Incerteza
4.
Faraday Discuss ; 183: 291-307, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381106

RESUMO

Potential environmental benefits have been identified for the utilization of carbon dioxide (CO2) as a feedstock for polyurethanes (PUR). CO2 can be utilized in the PUR supply chain in a wide variety of ways ranging from direct CO2 utilization for polyols as a PUR precursor, to indirect CO2 utilization for basic chemicals in the PUR supply chain. In this paper, we present a systematic exploration and environmental evaluation of all direct and indirect CO2 utilization options for flexible and rigid PUR foams. The analysis is based on an LCA-based PUR supply chain optimization model using linear programming to identify PUR production with minimal environmental impacts. The direct utilization of CO2 for polyols allows for large specific impact reductions of up to 4 kg CO2-eq. and 2 kg oil-eq. per kg CO2 utilized, but the amounts of CO2 that can be utilized are limited to 0.30 kg CO2 per kg PUR. The amount of CO2 utilized can be increased to up to 1.7 kg CO2 per kg PUR by indirect CO2 utilization in the PUR supply chain. Indirect CO2 utilization requires hydrogen (H2). The environmental impacts of H2 production strongly affect the impact of indirect CO2 utilization in PUR. To achieve optimal environmental performance under the current fossil-based H2 generation, PUR production can only utilize much less CO2 than theoretically possible. Thus, utilizing as much CO2 in the PUR supply chain as possible is not always environmentally optimal. Clean H2 production is required to exploit the full CO2 utilization potential for environmental impact reduction in PUR production.

5.
Environ Sci Technol ; 49(13): 7543-51, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26061620

RESUMO

The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.


Assuntos
Custos e Análise de Custo , Meio Ambiente , Indústrias/economia , Modelos Teóricos , Tecnologia , Álcalis/química , Eletrólise , Aquecimento Global , Humanos
6.
Science ; 374(6563): 71-76, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591623

RESUMO

Mitigating life-cycle greenhouse gas emissions of plastics is perceived as energy intensive and costly. We developed a bottom-up model that represents the life cycle of 90% of global plastics to examine pathways to net-zero emission plastics. Our results show that net-zero emission plastics can be achieved by combining biomass and carbon dioxide (CO2) utilization with an effective recycling rate of 70% while saving 34 to 53% of energy. Operational costs for net-zero emission plastics are in the same range as those for linear fossil-based production with carbon capture and storage and could even be substantially reduced. Realizing the full cost-saving potential of 288 billion US dollars requires low-cost supply of biomass and CO2, high-cost supply of oil, and incentivizing large-scale recycling and lowering investment barriers for all technologies that use renewable carbon feedstock.

7.
Annu Rev Chem Biomol Eng ; 11: 203-233, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216728

RESUMO

Design in the chemical industry increasingly aims not only at economic but also at environmental targets. Environmental targets are usually best quantified using the standardized, holistic method of life cycle assessment (LCA). The resulting life cycle perspective poses a major challenge to chemical engineering design because the design scope is expanded to include process, product, and supply chain. Here, we first provide a brief tutorial highlighting key elements of LCA. Methods to fill data gaps in LCA are discussed, as capturing the full life cycle is data intensive. On this basis, we review recent methods for integrating LCA into the design of chemical processes, products, and supply chains. Whereas adding LCA as a posteriori tool for decision support can be regarded as established, the integration of LCA into the design process is an active field of research. We present recent advances and derive future challenges for LCA-based design.


Assuntos
Fenômenos Químicos , Conservação dos Recursos Naturais , Meio Ambiente , Utilização de Equipamentos e Suprimentos , Marketing , Redes Neurais de Computação , Incerteza , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA