Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 1154, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25528190

RESUMO

BACKGROUND: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often used as a cellular model for Parkinson's disease, the relevance of this cellular model in the context of Parkinson's disease (PD) and other neurodegenerative diseases has not yet been systematically evaluated. RESULTS: We have used a systems genomics approach to characterize the SH-SY5Y cell line using whole-genome sequencing to determine the genetic content of the cell line and used transcriptomics and proteomics data to determine molecular correlations. Further, we integrated genomic variants using a network analysis approach to evaluate the suitability of the SH-SY5Y cell line for perturbation experiments in the context of neurodegenerative diseases, including PD. CONCLUSIONS: The systems genomics approach showed consistency across different biological levels (DNA, RNA and protein concentrations). Most of the genes belonging to the major Parkinson's disease pathways and modules were intact in the SH-SY5Y genome. Specifically, each analysed gene related to PD has at least one intact copy in SH-SY5Y. The disease-specific network analysis approach ranked the genetic integrity of SH-SY5Y as higher for PD than for Alzheimer's disease but lower than for Huntington's disease and Amyotrophic Lateral Sclerosis for loss of function perturbation experiments.


Assuntos
Genômica , Neuroblastoma/patologia , Doença de Parkinson/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Variação Genética , Humanos , Mutação INDEL , Proteômica
2.
Data Brief ; 25: 104130, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31294067

RESUMO

Ubiquitin specific peptidase 9 (USP9) is a deubiquitinase encoded by a sex-linked gene with a Y-chromosomal form (USP9Y) and an X-chromosomal form (USP9X) that escapes X-inactivation. Since USP9 is a key regulatory gene with sex-linked expression in the human brain, the gene may be of interest for researchers studying molecular gender differences and ubiquitin signaling in the brain. To assess the downstream effects of knocking down USP9X and USP9Y on a transcriptome-wide scale, we have conducted microarray profiling experiments using the human DU145 prostate cancer cell culture model, after confirming the robust expression of both USP9X and USP9Y in this model. By designing shRNA constructs for the specific knockdown of USP9X and the joint knockdown of USP9X and USP9Y, we have compared gene expression changes in both knockdowns to control conditions to infer potential shared and X- or Y-form specific alterations. Here, we provide details of the corresponding microarray profiling data, which has been deposited in the Gene Expression Omnibus database (GEO series accession number GSE79376). A biological interpretation of the data in the context of a potential involvement of USP9 in Alzheimer's disease has previously been presented in Köglsberger et al. (2016). To facilitate the re-use and re-analysis of the data for other applications, e.g. the study of ubiquitin signaling and protein turnover control, and the regulation of molecular gender differences in the human brain and brain-related disorders, we provide a more in-depth discussion of the data properties, specifications and possible use cases.

3.
Mol Neurobiol ; 54(10): 7979-7993, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27878758

RESUMO

Public transcriptomic studies have shown that several genes display pronounced gender differences in their expression in the human brain, which may influence the manifestations and risk for neuronal disorders. Here, we apply a transcriptome-wide analysis to discover genes with gender-specific expression and significant alterations in public postmortem brain tissue from Alzheimer's disease (AD) patients compared to controls. We identify the sex-linked ubiquitin-specific peptidase 9 (USP9) as an outstanding candidate gene with highly significant expression differences between the genders and male-specific underexpression in AD. Since previous studies have shown that USP9 can modulate the phosphorylation of the AD-associated protein MAPT, we investigate functional associations between USP9 and MAPT in further detail. After observing a high positive correlation between the expression of USP9 and MAPT in the public transcriptomics data, we show that USP9 knockdown results in significantly decreased MAPT expression in a DU145 cell culture model and a concentration-dependent decrease for the MAPT orthologs mapta and maptb in a zebrafish model. From the analysis of microarray and qRT-PCR experiments for the knockdown in DU145 cells and prior knowledge from the literature, we derive a data-congruent model for a USP9-dependent regulatory mechanism modulating MAPT expression via BACH1 and SMAD4. Overall, the analyses suggest USP9 may contribute to molecular gender differences observed in tauopathies and provide a new target for intervention strategies to modulate MAPT expression.


Assuntos
Doença de Alzheimer/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Tauopatias/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Fosforilação , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA