Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(2): 525-536, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160208

RESUMO

The presence of plastic and microplastic within the oceans as well as in marine flora and fauna have caused a multitude of problems that have been the topic of numerous investigations for many years. However, their impact on human health remains largely unknown. Such plastic and microplastic particles have been detected in blood and placenta, underlining their ability to enter the human body. Plastics also contain other compounds, such as plasticizers, antioxidants, or dyes, whose impact on human health is currently being studied. Critical enzymes within the metabolism of endogenous molecules, especially of xenobiotics, are the cytochrome P450 monooxygenases (CYPs). Although their importance in maintaining cellular balance has been confirmed, their interactions with plastics and related products are poorly understood. In this study, the possible relationship between different plastic-related compounds and CYP3A4 as one of the most important CYPs was analyzed using hepatic cells overexpressing this enzyme. Beginning with virtual compound screening and molecular docking of more than 1000 plastic-related compounds, several candidates were identified to interact with CYP3A4. In a second step, RNA-sequencing was used to study in detail the transcriptome-wide gene expression levels affected by the selected compounds. Three candidate molecules ((2,2'-methylenebis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethane, and 2,2'-methylenebis(6-cyclohexyl-4-methylphenol)) had an excellent binding affinity to CYP3A4 in-silico as well as cytotoxic effects and interactions with several metabolic pathways in-vitro. We identified common pathways influenced by all three selected plastic-related compounds. In particular, the suppression of pathways related to mitosis and 'DNA-templated DNA replication' which were confirmed by cell cycle analysis and single-cell gel electrophoresis. Furthermore, several mis-regulated metabolic and inflammation-related pathways were identified, suggesting the induction of hepatotoxicity at different levels. These findings imply that these compounds may cause liver problems subsequently affecting the entire organism.


Assuntos
Cresóis , Citocromo P-450 CYP3A , Transcriptoma , Gravidez , Feminino , Humanos , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Plásticos/toxicidade , Microplásticos , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Circ Res ; 129(8): 804-820, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34433292
3.
Arch Toxicol ; 97(12): 3259-3271, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676300

RESUMO

Pyrrolizidine alkaloids (PAs) are important plant hepatotoxins, which occur as contaminants in plant-based foods, feeds and phytomedicines. Numerous studies demonstrated that the genotoxicity and cytotoxicity of PAs depend on their chemical structure, allowing for potency ranking and grouping. Organic cation transporter-1 (OCT1) was previously shown to be involved in the cellular uptake of the cyclic PA diesters monocrotaline, retrorsine and senescionine. However, little is known about the structure-dependent transport of PAs. Therefore, we investigated the impact of OCT1 on the uptake and toxicity of three structurally diverse PAs (heliotrine, lasiocarpine and riddelliine) differing in their degree and type of esterification in metabolically competent human liver cell models and hamster fibroblasts. Human HepG2-CYP3A4 liver cells were exposed to the respective PA in the presence or absence of the OCT1-inhibitors D-THP and quinidine, revealing a strongly attenuated cytotoxicity upon OCT1 inhibition. The same experiments were repeated in V79-CYP3A4 hamster fibroblasts, confirming that OCT1 inhibition prevents the cytotoxic effects of all tested PAs. Interestingly, OCT1 protein levels were much lower in V79-CYP3A4 than in HepG2-CYP3A4 cells, which correlated with their lower susceptibility to PA-induced cytotoxicity. The cytoprotective effect of OCT1 inhibiton was also demonstrated in primary human hepatocytes following PA exposure. Our experiments further showed that the genotoxic effects triggered by the three PAs are blocked by OCT1 inhibition as evidenced by strongly reduced γH2AX and p53 levels. Consistently, inhibition of OCT1-mediated uptake suppressed the activation of the DNA damage response (DDR) as revealed by decreased phosphorylation of checkpoint kinases upon PA treatment. In conclusion, we demonstrated that PAs, independent of their degree of esterification, are substrates for OCT1-mediated uptake into human liver cells. We further provided evidence that OCT1 inhibition prevents PA-triggered genotoxicity, DDR activation and subsequent cytotoxicity. These findings highlight the crucial role of OCT1 together with CYP3A4-dependent metabolic activation for PA toxicity.


Assuntos
Antineoplásicos , Alcaloides de Pirrolizidina , Humanos , Citocromo P-450 CYP3A/metabolismo , Fígado , Hepatócitos , Alcaloides de Pirrolizidina/metabolismo , Dano ao DNA , Antineoplásicos/farmacologia
4.
Arch Toxicol ; 97(5): 1413-1428, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928417

RESUMO

Pyrrolizidine alkaloids (PAs) occur as contaminants in plant-based foods and herbal medicines. Following metabolic activation by cytochrome P450 (CYP) enzymes, PAs induce DNA damage, hepatotoxicity and can cause liver cancer in rodents. There is ample evidence that the chemical structure of PAs determines their toxicity. However, more quantitative genotoxicity data are required, particularly in primary human hepatocytes (PHH). Here, the genotoxicity of eleven structurally different PAs was investigated in human HepG2 liver cells with CYP3A4 overexpression and PHH using an in vitro test battery. Furthermore, the data were subject to benchmark dose (BMD) modeling to derive the genotoxic potency of individual PAs. The cytotoxicity was initially determined in HepG2-CYP3A4 cells, revealing a clear structure-toxicity relationship for the PAs. Importantly, experiments in PHH confirmed the structure-dependent toxicity and cytotoxic potency ranking of the tested PAs. The genotoxicity markers γH2AX and p53 as well as the alkaline Comet assay consistently demonstrated a structure-dependent genotoxicity of PAs in HepG2-CYP3A4 cells, correlating well with their cytotoxic potency. BMD modeling yielded BMD values in the range of 0.1-10 µM for most cyclic and open diesters, followed by the monoesters. While retrorsine showed the highest genotoxic potency, monocrotaline and lycopsamine displayed the lowest genotoxicity. Finally, experiments in PHH corroborated the genotoxic potency ranking, and revealed genotoxic effects even in the absence of detectable cytotoxicity. In conclusion, our findings strongly support the concept of grouping PAs into potency classes and help to pave the way for a broader acceptance of relative potency factors in risk assessment.


Assuntos
Neoplasias Hepáticas , Alcaloides de Pirrolizidina , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Hepatócitos , Testes de Mutagenicidade , Neoplasias Hepáticas/metabolismo
5.
Molecules ; 28(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630204

RESUMO

In recent years, plastic and especially microplastic in the oceans have caused huge problems to marine flora and fauna. Recently, such particles have also been detected in blood, breast milk, and placenta, underlining their ability to enter the human body, presumably via the food chain and other yet-unknown mechanisms. In addition, plastic contains plasticizers, antioxidants, or lubricants, whose impact on human health is also under investigation. At the cellular level, the most important enzymes involved in the metabolism of xenobiotic compounds are the cytochrome P450 monooxygenases (CYPs). Despite their extensive characterization in the maintenance of cellular balance, their interactions with plastic and related products are unexplored. In this study, the possible interactions between several plastic-related compounds and one of the most important cytochromes, CYP2C19, were analyzed. By applying virtual compound screening and molecular docking to more than 1000 commercially available plastic-related compounds, we identified candidates that are likely to interact with this protein. A growth inhibition assay confirmed their cytotoxic activity on a CYP2C19-transfected hepatic cell line. Subsequently, we studied the effect of the selected compounds on the transcriptome-wide gene expression level by conducting RNA sequencing. Three candidate molecules were identified, i.e., 2,2'-methylene bis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl) ethane, and 2,2'-methylene bis(6-cyclohexyl-4-methylphenol)), which bound with a high affinity to CYP2C19 in silico. They exerted a profound cytotoxicity in vitro and interacted with several metabolic pathways, of which the 'cholesterol biosynthesis process' was the most affected. In addition, other affected pathways involved mitosis, DNA replication, and inflammation, suggesting an increase in hepatotoxicity. These results indicate that plastic-related compounds could damage the liver by affecting several molecular pathways.


Assuntos
Plásticos , Transcriptoma , Feminino , Gravidez , Humanos , Células Hep G2 , Citocromo P-450 CYP2C19 , Simulação de Acoplamento Molecular
6.
Toxicol Appl Pharmacol ; 434: 115823, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896433

RESUMO

Alisertib (MLN8237), a novel Aurora A kinase inhibitor, is currently being clinically tested in late-phase trials for the therapy of various malignancies. In the present work, we describe alisertib's potential to perpetrate pharmacokinetic drug-drug interactions (DDIs) and/or to act as an antagonist of multidrug resistance (MDR). In accumulation assays, alisertib potently inhibited ABCC1 transporter, but not ABCB1 or ABCG2. The results of molecular modeling suggested a bifunctional mechanism for interaction on ABCC1. In addition, alisertib was characterized as a low- to moderate-affinity inhibitor of recombinant CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 isoenzymes, but without potential clinical relevance. Drug combination studies revealed the capability of alisertib to synergistically antagonize ABCC1-mediated resistance to daunorubicin. Although alisertib exhibited substrate characteristics toward ABCB1 transporter in monolayer transport assays, comparative proliferation studies showed lack of its MDR-victim behavior in cells overexpressing ABCB1 as well as ABCG2 and ABCC1. Lastly, alisertib did not affect the expression of ABCC1, ABCG2, ABCB1 transporters and CYP1A2, CYP3A4, CYP2B6 isozymes on mRNA level in various systemic and tumoral models. In conclusion, our study suggests that alisertib is a drug candidate with negligible potential for perpetrating systemic pharmacokinetic DDIs on ABCB1, ABCG2 and cytochromes P450. In addition, we introduce alisertib as an effective dual-activity chemosensitizer whose MDR-antagonistic capacities are not impaired by efflux or effect on MDR phenotype. Our in vitro findings provide important pieces of information for clinicians when introducing alisertib into the clinical area.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Azepinas/farmacologia , Azepinas/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Domínio Catalítico , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica
7.
Cell Biol Toxicol ; 38(2): 325-345, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33884520

RESUMO

Pyrrolizidine alkaloids (PAs) are a large group of highly toxic chemical compounds, which are found as cross-contaminants in numerous food products (e.g., honey), dietary supplements, herbal teas, and pharmaceutical herbal medicines. PA contaminations are responsible for serious hepatotoxicity and hepatocarcinogenesis. Health authorities have to set legal limit values to guarantee the safe consumption of plant-based nutritional and medical products without harmful health. Toxicological and chemical analytical methods are conventionally applied to determine legally permitted limit values for PAs. In the present investigation, we applied a highly sensitive transcriptomic approach to investigate the effect of low concentrations of five PAs (lasiocarpine, riddelliine, lycopsamine, echimidine, and monocrotaline) on human cytochrome P450 3A4-overexpressing HepG2 clone 9 hepatocytes. The transcriptomic profiling of deregulated gene expression indicated that the PAs disrupted important signaling pathways related to cell cycle regulation and DNA damage repair in the transfected hepatocytes, which may explain the carcinogenic PA effects. As PAs affected the expression of genes that involved in cell cycle regulation, we applied flow cytometric cell cycle analyses to verify the transcriptomic data. Interestingly, PA treatment led to an arrest in the S phase of the cell cycle, and this effect was more pronounced with more toxic PAs (i.e., lasiocarpine and riddelliine) than with the less toxic monocrotaline. Using immunofluorescence, high fractions of cells were detected with chromosome congression defects upon PA treatment, indicating mitotic failure. In conclusion, the tested PAs revealed threshold concentrations, above which crucial signaling pathways were deregulated resulting in cell damage and carcinogenesis. Cell cycle arrest and DNA damage repair point to the mutagenicity of PAs. The disturbance of chromosome congression is a novel mechanism of Pas, which may also contribute to PA-mediated carcinogenesis. Transcriptomic, cell cycle, and immunofluorescence analyses should supplement the standard techniques in toxicology to unravel the biological effects of PA exposure in liver cells as the primary target during metabolization of PAs.


Assuntos
Alcaloides de Pirrolizidina , Transcriptoma , Carcinogênese , Ciclo Celular , Células Clonais/química , Dano ao DNA , Células Hep G2 , Humanos , Monocrotalina , Alcaloides de Pirrolizidina/análise , Alcaloides de Pirrolizidina/toxicidade , Transcriptoma/genética
8.
Chem Res Toxicol ; 34(4): 1101-1113, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33719395

RESUMO

Contamination with 1,2-unsaturated pyrrolizidine alkaloids (PAs) is a serious problem for certain phytomedicines, foods, and animal feeds. Several of these PAs are genotoxic and carcinogenic, primarily in the liver, upon cytochrome P450 (CYP)-catalyzed activation into reactive (pyrrolic and pyrrole-like) metabolites. Here we investigated the metabolism of selected PAs (echimidine, europine, lasiocarpine, lycopsamine, retrorsine, and senecionine) in rat hepatocytes in primary culture and in human CYP3A4-transfected HepG2 cells. The open-chained diesters echimidine and lasiocarpine and the cyclic diester senecionine were extensively metabolized in rat hepatocytes into a broad spectrum of products released into the medium. A large portion of unidentified, possibly irreversibly bound, products remained in the cells while detectable amounts of reactive and other metabolites were found in the incubation media. In HepG2-CYP3A4 cells, lasiocarpine was more extensively metabolized than echimidine and senecionine which also gave rise to the release of pyrrolic metabolites. In human cells, no pyrrolic metabolites were detected in retrorsine or lycopsamine incubations, while no such metabolites were detected from europine in both cell types. Other types of metabolic changes comprised modifications such as side chain demethylation or oxygenation reactions like the formation of N-oxides. The latter, considered as a detoxification step, was a major pathway with cyclic diesters, was less distinctive for echimidine and lycopsamine and almost negligible for lasiocarpine and europine. Our data are in agreement with previously published cyto- and genotoxicity findings and suggests that the metabolic pattern may contribute substantially to the specific toxic potency of a certain congener. In addition, marked differences were found for certain congeners between rat hepatocytes and transfected human HepG2 cells, whereby a high level of bioactivation was found for lasiocarpine, whereas a very low level of bioactivation was observed for monoesters, in particular in human cells.


Assuntos
Hepatócitos/efeitos dos fármacos , Alcaloides de Pirrolizidina/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Humanos , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Células Tumorais Cultivadas
9.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540846

RESUMO

The adherence and shear-resistance of human umbilical venous endothelial cells (HUVEC) on polymers is determined in vitro in order to qualify cardiovascular implant materials. In these tests, variable fractions of HUVEC do not adhere to the material but remain suspended in the culture medium. Nonadherent HUVEC usually stop growing, rapidly lose their viability and can release mediators able to influence the growth and function of the adherent HUVEC. The aim of this study was the investigation of the time dependent behaviour of HUVEC under controlled nonadherent conditions, in order to gain insights into potential influences of these cells on their surrounding environment in particular adherent HUVEC in the context of in vitro biofunctionality assessment of cardiovascular implant materials. Data from adherent or nonadherent HUVEC growing on polystyrene-based cell adhesive tissue culture plates (TCP) or nonadhesive low attachment plates (LAP) allow to calculate the number of mediators released into the culture medium either from adherent or nonadherent cells. Thus, the source of the inflammatory mediators can be identified. For nonadherent HUVEC, a time-dependent aggregation without further proliferation was observed. The rate of apoptotic/dead HUVEC progressively increased over 90% within two days. Concomitant with distinct blebbing and loss of membrane integrity over time, augmented releases of prostacyclin (PGI2, up to 2.91 ± 0.62 fg/cell) and platelet-derived growth factor BB (PDGF-BB, up to 1.46 ± 0.42 fg/cell) were detected. The study revealed that nonadherent, dying HUVEC released mediators, which can influence the surrounding microenvironment and thereby the results of in vitro biofunctionality assessment of cardiovascular implant materials. Neglecting nonadherent HUVEC bears the risk for under- or overestimation of the materials endothelialization potential, which could lead to the loss of relevant candidates or to uncertainty with regard to their suitability for cardiac applications. One approach to minimize the influence from nonadherent endothelial cells could be their removal shortly after observing initial cell adhesion. However, this would require an individual adaptation of the study design, depending on the properties of the biomaterial used.


Assuntos
Adesão Celular/fisiologia , Técnicas de Cultura de Células , Células Endoteliais da Veia Umbilical Humana/citologia , Apoptose , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Morte Celular , Divisão Celular , Meios de Cultivo Condicionados/química , Citocinas/análise , Epoprostenol/análise , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Mediadores da Inflamação/análise , Peptídeos e Proteínas de Sinalização Intercelular/análise , L-Lactato Desidrogenase/análise , Poliestirenos , Proteínas Recombinantes/farmacologia , Propriedades de Superfície , Tromboxano A2/análise , Fator de Necrose Tumoral alfa/farmacologia
10.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769363

RESUMO

Tepotinib is a novel tyrosine kinase inhibitor recently approved for the treatment of non-small cell lung cancer (NSCLC). In this study, we evaluated the tepotinib's potential to perpetrate pharmacokinetic drug interactions and modulate multidrug resistance (MDR). Accumulation studies showed that tepotinib potently inhibits ABCB1 and ABCG2 efflux transporters, which was confirmed by molecular docking. In addition, tepotinib inhibited several recombinant cytochrome P450 (CYP) isoforms with varying potency. In subsequent drug combination experiments, tepotinib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCB1 and ABCG2 overexpression, respectively. Remarkably, MDR-modulatory properties were confirmed in ex vivo explants derived from NSCLC patients. Furthermore, we demonstrated that anticancer effect of tepotinib is not influenced by the presence of ABC transporters associated with MDR, although monolayer transport assays designated it as ABCB1 substrate. Finally, tested drug was observed to have negligible effect on the expression of clinically relevant drug efflux transporters and CYP enzymes. In conclusion, our findings provide complex overview on the tepotinib's drug interaction profile and suggest a promising novel therapeutic strategy for future clinical investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Citostáticos/farmacologia , Interações Medicamentosas , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperidinas/farmacologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
11.
Arch Toxicol ; 94(12): 4159-4172, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910235

RESUMO

1,2-unsaturated pyrrolizidine alkaloids (PAs) are natural plant constituents comprising more than 600 different structures. A major source of human exposure is thought to be cross-contamination of food, feed and phytomedicines with PA plants. In humans, laboratory and farm animals, certain PAs exert pronounced liver toxicity and can induce malignant liver tumors in rodents. Here, we investigated the cytotoxicity and genotoxicity of eleven PAs belonging to different structural classes. Although all PAs were negative in the fluctuation Ames test in Salmonella, they were cytotoxic and induced micronuclei in human HepG2 hepatoblastoma cells over-expressing human cytochrome P450 3A4. Lasiocarpine and cyclic diesters except monocrotaline were the most potent congeners both in cytotoxicity and micronucleus assays with concentrations below 3 µM inducing a doubling in micronuclei counts. Other open di-esters and all monoesters exhibited weaker or much weaker geno- and cytotoxicity. The findings were in agreement with recently suggested interim Relative Potency (iREP) factors with the exceptions of europine and monocrotaline. A more detailed micronuclei analysis at low concentrations of lasiocarpine, retrorsine or senecionine indicated that pronounced hypolinearity of the concentration-response curves was evident for retrorsine and senecionine but not for lasiocarpine. Our findings show that the genotoxic and cytotoxic potencies of PAs in a human hepatic cell line vary in a structure-dependent manner. Both the low potency of monoesters and the shape of prototype concentration-response relationships warrant a substance- and structure-specific approach in the risk assessment of PAs.


Assuntos
Hepatócitos/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mutagênese , Mutagênicos/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/biossíntese , Citocromo P-450 CYP3A/genética , Relação Dose-Resposta a Droga , Indução Enzimática , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Testes para Micronúcleos , Estrutura Molecular , Ratos Sprague-Dawley , Medição de Risco , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260972

RESUMO

Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors.


Assuntos
Plaquetas/fisiologia , Prostaglandinas/farmacologia , Plaquetas/efeitos dos fármacos , Humanos , Modelos Biológicos , Agregação Plaquetária/efeitos dos fármacos , Receptores de Prostaglandina/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Drug Metab Dispos ; 47(7): 699-709, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068367

RESUMO

Alectinib is a tyrosine kinase inhibitor currently used as a first-line treatment of anaplastic lymphoma kinase-positive metastatic nonsmall cell lung cancer (NSCLC). In the present work, we investigated possible interactions of this novel drug with ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 (P450) biotransformation enzymes that play significant roles in the phenomenon of multidrug resistance (MDR) of cancer cells as well as in pharmacokinetic drug-drug interactions. Using accumulation studies in Madin-Darby canine kidney subtype 2 (MDCKII) cells alectinib was identified as an inhibitor of ABCB1 and ABCG2 but not of ABCC1. In subsequent drug combination studies, we demonstrated the ability for alectinib to effectively overcome MDR in ABCB1- and ABCG2-overexpressing MDCKII and A431 cells. To describe the pharmacokinetic interaction profile of alectinib in a complete fashion, its possible inhibitory properties toward clinically relevant P450 enzymes (i.e., CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, or CYP3A5) were evaluated using human P450-expressing insect microsomes, revealing alectinib as a poor interactor. Advantageously for its use in pharmacotherapy, alectinib further exhibited negligible potential to cause any changes in expression of ABCB1, ABCG2, ABCC1, CYP1A2, CYP3A4, and CYP2B6 in intestine, liver, and NSCLC models. Our in vitro observations might serve as a valuable foundation for future in vivo studies that could support the rationale for our conclusions and possibly enable providing more efficient and safer therapy to many oncological patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Carbazóis/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Biotransformação , Carbazóis/farmacocinética , Cães , Humanos , Células Madin Darby de Rim Canino , Piperidinas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética
14.
Mol Pharm ; 16(11): 4436-4450, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31633365

RESUMO

Brivanib, a promising tyrosine kinase inhibitor, is currently undergoing advanced stages of clinical evaluation for solid tumor therapy. In this work, we investigated possible interactions of this novel drug candidate with ABC drug efflux transporters and cytochrome P450 (CYP450) drug-metabolizing enzymes that participate in cancer multidrug resistance (MDR) and pharmacokinetic drug-drug interactions (DDIs). First, in accumulation experiments with various model substrates, we identified brivanib as an inhibitor of the ABCB1, ABCG2, and ABCC1 transporters. However, in subsequent combination studies employing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide proliferation assays in both Madin-Darby canine kidney II (MDCKII) and A431 cellular models, only ABCG2 inhibition was revealed to be able to synergistically potentiate mitoxantrone effects. Advantageous to its possible use as MDR antagonist, brivanib's chemosensitizing properties were not impaired by activity of any of the MDR-associated ABC transporters, as observed in comparative viability assay in the MDCKII cell sublines. In incubation experiments with eight recombinant CYP450s, we found that brivanib potently inhibited CYP2C subfamily members and the CYP2B6 isoform. Finally, in induction studies, we demonstrated that brivanib upregulated ABCB1 and CYP1A2 messenger RNA levels in systemic cell models, although this interaction was not significantly manifested at a functional level. In conclusion, brivanib exhibits potential to cause clinically relevant pharmacokinetic DDIs and act as a modulator of ABCG2-mediated MDR. Our findings might be used as an important background for subsequent in vivo investigations and pave the way for the safe and effective use of brivanib in oncological patients.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Alanina/análogos & derivados , Biotransformação/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas/fisiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Triazinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Alanina/farmacologia , Animais , Linhagem Celular , Inibidores das Enzimas do Citocromo P-450/farmacologia , Cães , Humanos , Células Madin Darby de Rim Canino
15.
Cell Biol Int ; 40(3): 341-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26715207

RESUMO

Primary human hepatocytes are in great demand during drug development and in hepatology. However, both scarcity of tissue supply and donor variability of primary cells create a need for the development of alternative hepatocyte systems. By using a lentivirus vector system to transfer coding sequences of Upcyte® proliferation genes, we generated non-transformed stable hepatocyte cultures from human liver tissue samples. Here, we show data on newly generated proliferation-competent HepaFH3 cells investigated as conventional two-dimensional monolayer and as organotypical three-dimensional (3D) spheroid culture. In monolayer culture, HepaFH3 cells show typical cobblestone-like hepatocyte morphology and anchorage-dependent growth for at least 20 passages. Immunofluorescence staining revealed that characteristic hepatocyte marker proteins cytokeratin 8, human serum albumin, and cytochrome P450 (CYP) 3A4 were expressed. Quantitative real-time PCR analyses showed that expression levels of analyzed phase I CYP enzymes were at similar levels compared to those of cultured primary human hepatocytes and considerably higher than in the liver carcinoma cell line HepG2. Additionally, transcripts for phase II liver enzymes and transporter proteins OATP-C, MRP2, Oct1, and BSEP were present in HepaFH3. The cells produced urea and converted model compounds such as testosterone, diclofenac, and 7-OH-coumarin into phases I and II metabolites. Interestingly, phases I and II enzymes were expressed at about the same levels in convenient monolayer cultures and complex 3D spheroids. In conclusion, HepaFH3 cells and related primary-like hepatocyte lines seem to be promising tools for in vitro research of liver functions and as test system in drug development and toxicology analysis.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Hepatócitos/metabolismo , Esferoides Celulares/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Glicogênio/metabolismo , Células Hep G2 , Hepatócitos/citologia , Humanos , Imuno-Histoquímica , Queratina-8/genética , Queratina-8/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Albumina Sérica/genética , Albumina Sérica/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Esferoides Celulares/citologia , Ureia/metabolismo
16.
Clin Hemorheol Microcirc ; 86(1-2): 159-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37638428

RESUMO

BACKGROUND: Liver biotransformation is the major route for drug metabolism in humans, often catalysed by cytochrome P450 (CYP) enzymes. This first-pass effect can lead to hepatotoxicity and influences the bioavailability of drugs. OBJECTIVE: We aimed to establish in vitro culture systems simulating the liver first-pass to study effects of the proteasome inhibitor MG-132 simultaneously on hepatocytes and cancer cells. METHODS: The first-pass effect was simulated by conditioned medium transfer (CMT) from pre-treated HepG2 CYP3A4-overexpressing cells to either pancreatic cancer cell line PANC-1 or primary colon cancer cells, and by indirect co-culture (CC) of liver and cancer cells in a shared medium compartment. Experimental proteasome inhibitor MG-132 was used as test substance as it is detoxified by CYP3A4. RESULTS: Cancer cells showed higher viabilities in the first-pass simulation by CMT and CC formats when compared to monocultures indicating effective detoxification of MG-132 by HepG2 CYP3A4-overexpressing cells. HepG2-CYP3A4 cells showed reduced viabilites after treatment with MG-132. CONCLUSIONS: We successfully established two different culture systems to simulate the liver first-pass effect in vitro. Such systems easily allow to study drug effects simultaneously on liver and on target cancer cells. They are of great value in pre-clinical cancer research, pharmaceutical research and drug development.


Assuntos
Citocromo P-450 CYP3A , Leupeptinas , Neoplasias , Humanos , Células Hep G2 , Inibidores de Proteassoma/farmacologia , Fígado , Sistema Enzimático do Citocromo P-450/metabolismo , Biotransformação
17.
Sci Rep ; 14(1): 1271, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218994

RESUMO

Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Animais , Humanos , NADP , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP3A/metabolismo , Microssomos/metabolismo , Luciferases , Microssomos Hepáticos/metabolismo , Mamíferos/metabolismo
18.
Cells ; 12(17)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37681872

RESUMO

In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs. The aim of this study was to generate cell lines with stable overexpression of human phase-1 enzymes based on Chinese hamster ovary (CHO) suspension cells. Cells were sequentially modified with cDNAs for human CPR in combination with CYP1A2, CYP2B6, or CYP3A4, using lentiviral gene transfer. In parallel, CYP-overexpressing cell lines without recombinant CPR were generated. Successful recombinant expression was demonstrated by mRNA and protein analyses. Using prototypical CYP-substrates, generated cell lines proved to display specific enzyme activities of each overexpressed CYP while we did not find any endogenous activity of those CYPs in parental CHO cells. Interestingly, cell lines revealed some evidence that the dependence of CYP activity on CPR could vary between CYPs. This needs to be confirmed in further studies. Recombinant expression of CPR was also shown to enhance CYP3A4-independent metabolisation of testosterone to androstenedione in CHO cells. We propose the novel serum-free CHO suspension cell lines with enhanced CPR and/or defined CYP activity as a promising "humanised" in vitro model to study the specific effects of those human CYPs. This could be relevant for toxicology and/or pharmacology studies in the pharmaceutical industry or medicine.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Citocromo P-450 CYP3A/genética , Biotransformação
19.
Cells ; 12(15)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37566045

RESUMO

Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.


Assuntos
Neoplasias , Pró-Fármacos , Trombose , Humanos , Pró-Fármacos/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Células Endoteliais/metabolismo , Ciclofosfamida/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/tratamento farmacológico , Trombose/tratamento farmacológico
20.
Cells ; 11(15)2022 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-35954291

RESUMO

The characterization of novel radiotracers toward their metabolic stability is an essential part of their development. While in vitro methods such as liver microsome assays or ex vivo blood or tissue samples provide information on overall stability, little or no information is obtained on cytochrome P450 (CYP) enzyme and isoform-specific contribution to the metabolic fate of individual radiotracers. Herein, we investigated recently established CYP-overexpressing hepatoblastoma cell lines (HepG2) for their suitability to study the metabolic stability of radiotracers in general and to gain insight into CYP isoform specificity. Wildtype HepG2 and CYP1A2-, CYP2C19-, and CYP3A4-overexpressing HepG2 cells were incubated with radiotracers, and metabolic turnover was analyzed. The optimized protocol, covering cell seeding in 96-well plates and analysis of supernatant by radio thin-layer-chromatography for higher throughput, was transferred to the evaluation of three 18F-labeled celecoxib-derived cyclooxygenase-2 inhibitors (coxibs). These investigations revealed time-dependent degradation of the intact radiotracers, as well as CYP isoform- and substrate-specific differences in their metabolic profiles. HepG2 CYP2C19 proved to be the cell line showing the highest metabolic turnover for each radiotracer studied here. Comparison with human and murine liver microsome assays showed good agreement with the human metabolite profile obtained by the HepG2 cell lines. Therefore, CYP-overexpressing HepG2 cells provide a good complement for assessing the metabolic stability of radiotracers and allow the analysis of the CYP isoform-specific contribution to the overall radiotracer metabolism.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Linhagem Celular , Citocromo P-450 CYP2C19 , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Camundongos , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA