Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(7): 1352-1369, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866022

RESUMO

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.


Assuntos
Drosophila melanogaster , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Obesidade , Complexo de Endopeptidases do Proteassoma , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Drosophila melanogaster/genética , Deficiência Intelectual/genética , Interferons/metabolismo , Interferons/genética , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Obesidade/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
Am J Hum Genet ; 111(2): 364-382, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272033

RESUMO

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomiopatia Dilatada , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coração , Transtornos do Neurodesenvolvimento/genética
3.
Am J Hum Genet ; 111(3): 487-508, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325380

RESUMO

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Assuntos
Hiperparatireoidismo , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Feminino , Animais , Humanos , Deficiência Intelectual/patologia , Peixe-Zebra/genética , Mutação de Sentido Incorreto/genética , Fatores de Transcrição/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
4.
Am J Hum Genet ; 109(8): 1549-1558, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35858628

RESUMO

Deoxyhypusine hydroxylase (DOHH) is the enzyme catalyzing the second step in the post-translational synthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] in the eukaryotic initiation factor 5A (eIF5A). Hypusine is formed exclusively in eIF5A by two sequential enzymatic steps catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusinated eIF5A is essential for translation and cell proliferation in eukaryotes, and all three genes encoding eIF5A, DHPS, and DOHH are highly conserved throughout eukaryotes. Pathogenic variants affecting either DHPS or EIF5A have been previously associated with neurodevelopmental disorders. Using trio exome sequencing, we identified rare bi-allelic pathogenic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. The DOHH variants are associated with a neurodevelopmental phenotype that is similar to phenotypes caused by DHPS or EIF5A variants and includes global developmental delay, intellectual disability, facial dysmorphism, and microcephaly. A two-dimensional gel analyses revealed the accumulation of deoxyhypusine-containing eIF5A [eIF5A(Dhp)] and a reduction in the hypusinated eIF5A in fibroblasts derived from affected individuals, providing biochemical evidence for deficiency of DOHH activity in cells carrying the bi-allelic DOHH variants. Our data suggest that rare bi-allelic variants in DOHH result in reduced enzyme activity, limit the hypusination of eIF5A, and thereby lead to a neurodevelopmental disorder.


Assuntos
Lisina , Oxigenases de Função Mista , Transtornos do Neurodesenvolvimento , Alelos , Expressão Gênica , Humanos , Lisina/análogos & derivados , Oxigenases de Função Mista/genética , Transtornos do Neurodesenvolvimento/genética
5.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051358

RESUMO

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Assuntos
Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Mutação com Perda de Função , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adolescente , Proteína BRCA1/imunologia , Criança , Pré-Escolar , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Família , Feminino , Regulação da Expressão Gênica , Heterozigoto , Histonas/genética , Histonas/imunologia , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/imunologia , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
6.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894126

RESUMO

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Assuntos
Agenesia do Corpo Caloso/genética , Cerebelo/anormalidades , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Adulto , Agenesia do Corpo Caloso/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Hidrolases/química , Hidrolases/genética , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Masculino , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Tubulina (Proteína)/metabolismo , Adulto Jovem
7.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811806

RESUMO

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Assuntos
Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Histona Desacetilases/metabolismo , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Acetilação , Adolescente , Animais , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Histonas/química , Histonas/metabolismo , Humanos , Lactente , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Síndrome , Adulto Jovem , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
8.
Genet Med ; 26(6): 101120, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38469793

RESUMO

PURPOSE: Imbalances in protein homeostasis affect human brain development, with the ubiquitin-proteasome system (UPS) and autophagy playing crucial roles in neurodevelopmental disorders (NDD). This study explores the impact of biallelic USP14 variants on neurodevelopment, focusing on its role as a key hub connecting UPS and autophagy. METHODS: Here, we identified biallelic USP14 variants in 4 individuals from 3 unrelated families: 1 fetus, a newborn with a syndromic NDD and 2 siblings affected by a progressive neurological disease. Specifically, the 2 siblings from the latter family carried 2 compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330∗), whereas the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs∗24) variant, and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs∗11) variant. Functional studies were conducted using sodium dodecyl-sulfate polyacrylamide gel electrophoresis, western blotting, and mass spectrometry analyses in both patient-derived and CRISPR-Cas9-generated cells. RESULTS: Our investigations indicated that the USP14 variants correlated with reduced N-terminal methionine excision, along with profound alterations in proteasome, autophagy, and mitophagy activities. CONCLUSION: Biallelic USP14 variants in NDD patients perturbed protein degradation pathways, potentially contributing to disorder etiology. Altered UPS, autophagy, and mitophagy activities underscore the intricate interplay, elucidating their significance in maintaining proper protein homeostasis during brain development.


Assuntos
Transtornos do Neurodesenvolvimento , Ubiquitina Tiolesterase , Feminino , Humanos , Recém-Nascido , Masculino , Alelos , Autofagia/genética , Predisposição Genética para Doença , Homozigoto , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina Tiolesterase/genética
9.
Ann Neurol ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606373

RESUMO

OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.

10.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197074

RESUMO

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética/genética , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , eIF-2 Quinase/genética , Adolescente , Ataxia/genética , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Lactente , Masculino , Substância Branca/patologia
11.
BMC Med ; 21(1): 5, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600297

RESUMO

BACKGROUND: Observational studies have linked childhood obesity with elevated risk of colorectal cancer; however, it is unclear if this association is causal or independent from the effects of obesity in adulthood on colorectal cancer risk. METHODS: We conducted Mendelian randomization (MR) analyses to investigate potential causal relationships between self-perceived body size (thinner, plumper, or about average) in early life (age 10) and measured body mass index in adulthood (mean age 56.5) with risk of colorectal cancer. The total and independent effects of body size exposures were estimated using univariable and multivariable MR, respectively. Summary data were obtained from a genome-wide association study of 453,169 participants in UK Biobank for body size and from a genome-wide association study meta-analysis of three colorectal cancer consortia of 125,478 participants. RESULTS: Genetically predicted early life body size was estimated to increase odds of colorectal cancer (odds ratio [OR] per category change: 1.12, 95% confidence interval [CI]: 0.98-1.27), with stronger results for colon cancer (OR: 1.16, 95% CI: 1.00-1.35), and distal colon cancer (OR: 1.25, 95% CI: 1.04-1.51). After accounting for adult body size using multivariable MR, effect estimates for early life body size were attenuated towards the null for colorectal cancer (OR: 0.97, 95% CI: 0.77-1.22) and colon cancer (OR: 0.97, 95% CI: 0.76-1.25), while the estimate for distal colon cancer was of similar magnitude but more imprecise (OR: 1.27, 95% CI: 0.90-1.77). Genetically predicted adult life body size was estimated to increase odds of colorectal (OR: 1.27, 95% CI: 1.03, 1.57), colon (OR: 1.32, 95% CI: 1.05, 1.67), and proximal colon (OR: 1.57, 95% CI: 1.21, 2.05). CONCLUSIONS: Our findings suggest that the positive association between early life body size and colorectal cancer risk is likely due to large body size retainment into adulthood.


Assuntos
Neoplasias do Colo , Obesidade Infantil , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Adiposidade/genética , Fatores de Risco , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Índice de Massa Corporal , Polimorfismo de Nucleotídeo Único
12.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183572

RESUMO

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Criança , Feminino , Humanos , Lactente , Masculino , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteína Fosfatase 2C/genética , Estudos Retrospectivos , Vômito , Pré-Escolar , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
13.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639323

RESUMO

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Assuntos
Fator 10 de Crescimento de Fibroblastos/genética , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/mortalidade , Pneumopatias/genética , Pneumopatias/mortalidade , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Variações do Número de Cópias de DNA/genética , Feminino , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Recém-Nascido , Doenças do Recém-Nascido/metabolismo , Doenças do Recém-Nascido/patologia , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Pneumopatias/metabolismo , Pneumopatias/patologia , Masculino , Herança Materna , Organogênese , Herança Paterna , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas com Domínio T/metabolismo
14.
Genet Med ; 24(1): 179-191, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906456

RESUMO

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Anormalidades Musculoesqueléticas , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Anormalidades Musculoesqueléticas/genética , Fenótipo
15.
Genet Med ; 24(9): 1941-1951, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678782

RESUMO

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Proteínas Serina-Treonina Quinases , Simportadores , Encéfalo/anormalidades , Domínio Catalítico/genética , Hemizigoto , Humanos , Mutação com Perda de Função , Masculino , Herança Materna/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação de Sentido Incorreto , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Simportadores/metabolismo
16.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34188164

RESUMO

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Assuntos
Transtorno Autístico , Neuropeptídeos , Animais , Transtorno Autístico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Prosencéfalo/metabolismo , Fatores de Transcrição/metabolismo
17.
Am J Hum Genet ; 102(6): 1126-1142, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805043

RESUMO

The proteasome processes proteins to facilitate immune recognition and host defense. When inherently defective, it can lead to aberrant immunity resulting in a dysregulated response that can cause autoimmunity and/or autoinflammation. Biallelic or digenic loss-of-function variants in some of the proteasome subunits have been described as causing a primary immunodeficiency disease that manifests as a severe dysregulatory syndrome: chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE). Proteasome maturation protein (POMP) is a chaperone for proteasome assembly and is critical for the incorporation of catalytic subunits into the proteasome. Here, we characterize and describe POMP-related autoinflammation and immune dysregulation disease (PRAID) discovered in two unrelated individuals with a unique constellation of early-onset combined immunodeficiency, inflammatory neutrophilic dermatosis, and autoimmunity. We also begin to delineate a complex genetic mechanism whereby de novo heterozygous frameshift variants in the penultimate exon of POMP escape nonsense-mediated mRNA decay (NMD) and result in a truncated protein that perturbs proteasome assembly by a dominant-negative mechanism. To our knowledge, this mechanism has not been reported in any primary immunodeficiencies, autoinflammatory syndromes, or autoimmune diseases. Here, we define a unique hypo- and hyper-immune phenotype and report an immune dysregulation syndrome caused by frameshift mutations that escape NMD.


Assuntos
Predisposição Genética para Doença , Chaperonas Moleculares/genética , Mutação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Sequência de Bases , Linhagem Celular , Estresse do Retículo Endoplasmático , Éxons/genética , Família , Mutação da Fase de Leitura/genética , Heterozigoto , Humanos , Síndromes de Imunodeficiência/genética , Imunofenotipagem , Recém-Nascido , Inflamação/patologia , Interferon Tipo I/metabolismo , Masculino , Proteínas Mutantes/metabolismo , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome , Resposta a Proteínas não Dobradas
18.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656860

RESUMO

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Assuntos
Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variação Genética , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Adolescente , Adulto , Linhagem Celular , Criança , Éxons/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Linhagem , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo
19.
Genet Med ; 23(2): 363-373, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33144681

RESUMO

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Epilepsia , Transtorno do Espectro Autista/genética , Encefalopatias/genética , Epilepsia/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Masculino , Proteínas do Tecido Nervoso , Convulsões/genética
20.
Am J Hum Genet ; 100(1): 117-127, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017373

RESUMO

From a GeneMatcher-enabled international collaboration, we identified ten individuals affected by intellectual disability, speech delay, ataxia, and facial dysmorphism and carrying a deleterious EBF3 variant detected by whole-exome sequencing. One 9-bp duplication and one splice-site, five missense, and two nonsense variants in EBF3 were found; the mutations occurred de novo in eight individuals, and the missense variant c.625C>T (p.Arg209Trp) was inherited by two affected siblings from their healthy mother, who is mosaic. EBF3 belongs to the early B cell factor family (also known as Olf, COE, or O/E) and is a transcription factor involved in neuronal differentiation and maturation. Structural assessment predicted that the five amino acid substitutions have damaging effects on DNA binding of EBF3. Transient expression of EBF3 mutant proteins in HEK293T cells revealed mislocalization of all but one mutant in the cytoplasm, as well as nuclear localization. By transactivation assays, all EBF3 mutants showed significantly reduced or no ability to activate transcription of the reporter gene CDKN1A, and in situ subcellular fractionation experiments demonstrated that EBF3 mutant proteins were less tightly associated with chromatin. Finally, in RNA-seq and ChIP-seq experiments, EBF3 acted as a transcriptional regulator, and mutant EBF3 had reduced genome-wide DNA binding and gene-regulatory activity. Our findings demonstrate that variants disrupting EBF3-mediated transcriptional regulation cause intellectual disability and developmental delay and are present in ∼0.1% of individuals with unexplained neurodevelopmental disorders.


Assuntos
Ataxia/genética , Face/anormalidades , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Deficiências do Desenvolvimento/genética , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Genes Reporter , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Mosaicismo , Transporte Proteico/genética , Síndrome , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA