Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 25(37): 375703, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25158867

RESUMO

Monolayer MoS2 is a direct band gap semiconductor which has been recently investigated for low-power field effect transistors. The initial studies have shown promising performance, including a high on/off current ratio and carrier mobility with a high-κ gate dielectric. However, the performance of these devices strongly depends on the crystalline quality and defect morphology of the monolayers. In order to obtain a detailed understanding of the MoS2 electronic device properties, we examine possible defect structures and their impact on the MoS2 monolayer electronic properties, using density functional theory in combination with scanning tunneling microscopy to identify the nature of the most likely defects. Quantitative understanding based on a detailed knowledge of the atomic and electronic structures will facilitate the search of suitable defect passivation techniques. Our results show that S adatoms are the most energetically favorable type of defect and that S vacancies are energetically more favorable than Mo vacancies. This approach may be extended to other transition-metal dichalcogenides (TMDs), thus providing useful insights to optimize TMD-based electronic devices.

2.
Sci Rep ; 6: 33562, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27666523

RESUMO

In an electronic device based on two dimensional (2D) transitional metal dichalcogenides (TMDs), finding a low resistance metal contact is critical in order to achieve the desired performance. However, due to the unusual Fermi level pinning in metal/2D TMD interface, the performance is limited. Here, we investigate the electronic properties of TMDs and transition metal oxide (TMO) interfaces (MoS2/MoO3) using density functional theory (DFT). Our results demonstrate that, due to the large work function of MoO3 and the relative band alignment with MoS2, together with small energy gap, the MoS2/MoO3 interface is a good candidate for a tunnel field effect (TFET)-type device. Moreover, if the interface is not stoichiometric because of the presence of oxygen vacancies in MoO3, the heterostructure is more suitable for p-type (hole) contacts, exhibiting an Ohmic electrical behavior as experimentally demonstrated for different TMO/TMD interfaces. Our results reveal that the defect state induced by an oxygen vacancy in the MoO3 aligns with the valance band of MoS2, showing an insignificant impact on the band gap of the TMD. This result highlights the role of oxygen vacancies in oxides on facilitating appropriate contacts at the MoS2 and MoOx (x < 3) interface, which consistently explains the available experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA