Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(7): 3621-3635, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36045002

RESUMO

Neurons, even in the earliest sensory regions of cortex, are subject to a great deal of contextual influences from both within and across modality connections. Recent work has shown that primary sensory areas can respond to and, in some cases, discriminate stimuli that are not of their target modality: for example, primary somatosensory cortex (SI) discriminates visual images of graspable objects. In the present work, we investigated whether SI would discriminate sounds depicting hand-object interactions (e.g. bouncing a ball). In a rapid event-related functional magnetic resonance imaging experiment, participants listened attentively to sounds from 3 categories: hand-object interactions, and control categories of pure tones and animal vocalizations, while performing a one-back repetition detection task. Multivoxel pattern analysis revealed significant decoding of hand-object interaction sounds within SI, but not for either control category. Crucially, in the hand-sensitive voxels defined from an independent tactile localizer, decoding accuracies were significantly higher for hand-object interactions compared to pure tones in left SI. Our findings indicate that simply hearing sounds depicting familiar hand-object interactions elicit different patterns of activity in SI, despite the complete absence of tactile stimulation. These results highlight the rich contextual information that can be transmitted across sensory modalities even to primary sensory areas.


Assuntos
Mãos , Córtex Somatossensorial , Animais , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Neurônios/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
2.
Neuroimage ; 276: 120172, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230207

RESUMO

In brain-based communication, voluntarily modulated brain signals (instead of motor output) are utilized to interact with the outside world. The possibility to circumvent the motor system constitutes an important alternative option for severely paralyzed. Most communication brain-computer interface (BCI) paradigms require intact visual capabilities and impose a high cognitive load, but for some patients, these requirements are not given. In these situations, a better-suited, less cognitively demanding information-encoding approach may exploit auditorily-cued selective somatosensory attention to vibrotactile stimulation. Here, we propose, validate and optimize a novel communication-BCI paradigm using differential fMRI activation patterns evoked by selective somatosensory attention to tactile stimulation of the right hand or left foot. Using cytoarchitectonic probability maps and multi-voxel pattern analysis (MVPA), we show that the locus of selective somatosensory attention can be decoded from fMRI-signal patterns in (especially primary) somatosensory cortex with high accuracy and reliability, with the highest classification accuracy (85.93%) achieved when using Brodmann area 2 (SI-BA2) at a probability level of 0.2. Based on this outcome, we developed and validated a novel somatosensory attention-based yes/no communication procedure and demonstrated its high effectiveness even when using only a limited amount of (MVPA) training data. For the BCI user, the paradigm is straightforward, eye-independent, and requires only limited cognitive functioning. In addition, it is BCI-operator friendly given its objective and expertise-independent procedure. For these reasons, our novel communication paradigm has high potential for clinical applications.


Assuntos
Interfaces Cérebro-Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Mãos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia
3.
Neuroimage ; 237: 118195, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038769

RESUMO

Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.


Assuntos
Volume Sanguíneo Cerebral/fisiologia , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Córtex Somatossensorial/diagnóstico por imagem , Percepção do Tato/fisiologia , Adulto , Animais , Estimulação Elétrica , Feminino , Humanos , Masculino , Imagem Óptica , Estimulação Física , Ratos , Reprodutibilidade dos Testes
4.
Neuroimage ; 202: 116134, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470124

RESUMO

Viewing a speaker's lip movements can improve the brain's ability to 'track' the amplitude envelope of the auditory speech signal and facilitate intelligibility. Whether such neurobehavioral benefits can also arise from tactually sensing the speech envelope on the skin is unclear. We hypothesized that tactile speech envelopes can improve neural tracking of auditory speech and thereby facilitate intelligibility. To test this, we applied continuous auditory speech and vibrotactile speech-envelope-shaped stimulation at various asynchronies to the ears and index fingers of normally-hearing human listeners while simultaneously assessing speech-recognition performance and cortical speech-envelope tracking with electroencephalography. Results indicate that tactile speech-shaped envelopes improve the cortical tracking, but not intelligibility, of degraded auditory speech. The cortical speech-tracking benefit occurs for tactile input leading the auditory input by 100 m s or less, emerges in the EEG during an early time window (~0-150 m s), and in particular involves cortical activity in the delta (1-4 Hz) range. These characteristics hint at a predictive mechanism for multisensory integration of complex slow time-varying inputs that might play a role in tactile speech communication.


Assuntos
Córtex Cerebral/fisiologia , Ritmo Delta/fisiologia , Eletroencefalografia , Inteligibilidade da Fala , Percepção da Fala/fisiologia , Percepção do Tato/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Física , Fatores de Tempo , Adulto Jovem
5.
Neuroimage ; 186: 369-381, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391345

RESUMO

Functional Magnetic Resonance Imaging (fMRI) has been successfully used for Brain Computer Interfacing (BCI) to classify (imagined) movements of different limbs. However, reliable classification of more subtle signals originating from co-localized neural networks in the sensorimotor cortex, e.g. individual movements of fingers of the same hand, has proved to be more challenging, especially when taking into account the requirement for high single trial reliability in the BCI context. In recent years, Multi Voxel Pattern Analysis (MVPA) has gained momentum as a suitable method to disclose such weak, distributed activation patterns. Much attention has been devoted to developing and validating data analysis strategies, but relatively little guidance is available on the choice of experimental design, even less so in the context of BCI-MVPA. When applicable, block designs are considered the safest choice, but the expectations, strategies and adaptation induced by blocking of similar trials can make it a sub-optimal strategy. Fast event-related designs, in contrast, require a more complicated analysis and show stronger dependence on linearity assumptions but allow for randomly alternating trials. However, they lack resting intervals that enable the BCI participant to process feedback. In this proof-of-concept paper a hybrid blocked fast-event related design is introduced that is novel in the context of MVPA and BCI experiments, and that might overcome these issues by combining the rest periods of the block design with the shorter and randomly alternating trial characteristics of a rapid event-related design. A well-established button-press experiment was used to perform a within-subject comparison of the proposed design with a block and a slow event-related design. The proposed hybrid blocked fast-event related design showed a decoding accuracy that was close to that of the block design, which showed highest accuracy. It allowed for across-design decoding, i.e. reliable prediction of examples obtained with another design. Finally, it also showed the most stable incremental decoding results, obtaining good performance with relatively few blocks. Our findings suggest that the blocked fast event-related design could be a viable alternative to block designs in the context of BCI-MVPA, when expectations, strategies and adaptation make blocking of trials of the same type a sub-optimal strategy. Additionally, the blocked fast event-related design is also suitable for applications in which fast incremental decoding is desired, and enables the use of a slow or block design during the test phase.


Assuntos
Mapeamento Encefálico/métodos , Interfaces Cérebro-Computador , Imageamento por Ressonância Magnética/métodos , Projetos de Pesquisa , Córtex Sensório-Motor/fisiologia , Adulto , Teorema de Bayes , Feminino , Humanos , Masculino , Desempenho Psicomotor , Adulto Jovem
6.
Cereb Cortex ; 26(1): 384-401, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25491119

RESUMO

Perceived roughness is associated with a variety of physical factors and multiple peripheral afferent types. The current study investigated whether this complexity of the mapping between physical and perceptual space is reflected at the cortical level. In an integrative psychophysical and imaging approach, we used dot pattern stimuli for which previous studies reported a simple linear relationship of interdot spacing and perceived spatial density and a more complex function of perceived roughness. Thus, by using both a roughness and a spatial estimation task, the physical and perceived stimulus characteristics could be dissociated, with the spatial density task controlling for the processing of low-level sensory aspects. Multivoxel pattern analysis was used to investigate which brain regions hold information indicative of the level of the perceived texture characteristics. While information about differences in perceived roughness was primarily available in higher-order cortices, that is, the operculo-insular cortex and a ventral visual cortex region, information about perceived spatial density could already be derived from early somatosensory and visual regions. This result indicates that cortical processing reflects the different complexities of the evaluated haptic texture dimensions. Furthermore, this study is to our knowledge the first to show a contribution of the visual cortex to tactile roughness perception.


Assuntos
Percepção Espacial/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Feminino , Humanos , Masculino , Córtex Somatossensorial/fisiologia , Adulto Jovem
7.
Pain ; 165(3): 500-522, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851343

RESUMO

ABSTRACT: Habituation to pain is a fundamental learning process and important adaption. Yet, a comprehensive review of the current state of the field is lacking. Through a systematic search, 63 studies were included. Results address habituation to pain in healthy individuals based on self-report, electroencephalography, or functional magnetic resonance imaging. Our findings indicate a large variety in methods, experimental settings, and contexts, making habituation a ubiquitous phenomenon. Habituation to pain based on self-report studies shows a large influence of expectations, as well as the presence of individual differences. Furthermore, widespread neural effects, with sometimes opposing effects in self-report measures, are noted. Electroencephalography studies showed habituation of the N2-P2 amplitude, whereas functional magnetic resonance imaging studies showed decreasing activity during painful repeated stimulation in several identified brain areas (cingulate cortex and somatosensory cortices). Important considerations for the use of terminology, methodology, statistics, and individual differences are discussed. This review will aid our understanding of habituation to pain in healthy individuals and may lead the way to improving methods and designs for personalized treatment approaches in chronic pain patients.


Assuntos
Habituação Psicofisiológica , Dor , Humanos , Habituação Psicofisiológica/fisiologia , Autorrelato , Eletroencefalografia , Imageamento por Ressonância Magnética
8.
Neuroimage ; 75: 123-135, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23507388

RESUMO

Both visual and haptic information add to the perception of surface texture. While prior studies have reported crossmodal interactions of both sensory modalities at the behavioral level, neuroimaging studies primarily investigated texture perception in separate visual and haptic paradigms. These experimental designs, however, only allowed to identify overlap in both sensory processing streams but no interaction of visual and haptic texture processing. By varying texture characteristics in a bimodal task, the current study investigated how these crossmodal interactions are reflected at the cortical level. We used fMRI to compare cortical activation in response to matching versus non-matching visual-haptic texture information. We expected that passive simultaneous presentation of matching visual-haptic input would be sufficient to induce BOLD responses graded with varying texture characteristics. Since no cognitive evaluation of the stimuli was required, we expected to find changes primarily at a rather early processing stage. Our results confirmed our assumptions by showing crossmodal interactions of visual-haptic texture information in early somatosensory and visual cortex. However, the nature of the crossmodal effects was slightly different in both sensory cortices. In early visual cortex, matching visual-haptic information increased the average activation level and induced parametric BOLD signal variations with varying texture characteristics. In early somatosensory cortex only the latter was true. These results challenge the notion that visual and haptic texture information is processed independently and indicate a crossmodal interaction of sensory information already at an early cortical processing stage.


Assuntos
Mapeamento Encefálico , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
9.
Hum Brain Mapp ; 34(5): 1148-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22576840

RESUMO

Fine surface texture is best discriminated by touch, in contrast to macro geometric features like shape. We used functional magnetic resonance imaging and a delayed match-to-sample task to investigate the neural substrate for working memory of tactile surface texture. Blindfolded right-handed males encoded the texture or location of up to four sandpaper stimuli using the dominant or non-dominant hand. They maintained the information for 10-12 s and then answered whether a probe stimulus matched the memory array. Analyses of variance with the factors Hand, Task, and Load were performed on the estimated percent signal change for the encoding and delay phase. During encoding, contralateral effects of Hand were found in sensorimotor regions, whereas Load effects were observed in bilateral postcentral sulcus (BA2), secondary somatosensory cortex (S2), pre-SMA, dorsolateral prefrontal cortex (dlPFC), and superior parietal lobule (SPL). During encoding and delay, Task effects (texture > location) were found in central sulcus, S2, pre-SMA, dlPFC, and SPL. The Task and Load effects found in hand- and modality-specific regions BA2 and S2 indicate involvement of these regions in the tactile encoding and maintenance of fine surface textures. Similar effects in hand- and modality-unspecific areas dlPFC, pre-SMA and SPL suggest that these regions contribute to the cognitive monitoring required to encode and maintain multiple items. Our findings stress both the particular importance of S2 for the encoding and maintenance of tactile surface texture, as well as the supramodal nature of parieto-frontal networks involved in cognitive control.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio , Estimulação Física , Tempo de Reação/fisiologia , Privação Sensorial/fisiologia , Adulto Jovem
10.
Exp Brain Res ; 224(3): 477-88, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23161157

RESUMO

Tactile perceptual learning has been shown to improve performance on tactile tasks, but there is no agreement about the extent of transfer to untrained skin locations. The lack of such transfer is often seen as a behavioral index of the contribution of early somatosensory brain regions. Moreover, the time course of improvements has never been described explicitly. Sixteen subjects were trained on the Ludvigh task (a tactile vernier task) on four subsequent days. On the fifth day, transfer of learning to the non-trained contralateral hand was tested. In five subjects, we explored to what extent training effects were retained approximately 1.5 years after the final training session, expecting to find long-term retention of learning effects after training. Results showed that tactile perceptual learning mainly occurred offline, between sessions. Training effects did not transfer initially, but became fully available to the untrained contralateral hand after a few additional training runs. After 1.5 years, training effects were not fully washed out and could be recuperated within a single training session. Interpreted in the light of theories of visual perceptual learning, these results suggest that tactile perceptual learning is not fundamentally different from visual perceptual learning, but might proceed at a slower pace due to procedural and task differences, thus explaining the apparent divergence in the amount of transfer and long-term retention.


Assuntos
Aprendizagem/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Transferência de Experiência/fisiologia , Adulto , Feminino , Dedos/fisiologia , Humanos , Curva de Aprendizado , Masculino
11.
J Oral Facial Pain Headache ; 37(2): 139-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389840

RESUMO

AIMS: To measure brain activity in patients with bruxism and temporomandibular disorder (TMD)-related pain in comparison to controls using functional magnetic resonance imaging (fMRI) and to investigate whether modulations in jaw clenching led to different pain reports and/or changes in neural activity in motor and pain processing areas within and between both groups. METHODS: A total of 40 participants (21 patients with bruxism and TMD-related pain and 19 healthy controls) performed a tooth-clenching task while lying inside a 3T MRI scanner. Participants were instructed to mildly or strongly clench their teeth for brief periods of 12 seconds and to subsequently rate their clenching intensity and pain experience after each clenching period. RESULTS: Patients reported significantly more pain during strong clenching compared to mild clenching. Further results showed significant differences between patients and controls in activity in areas of brain networks commonly associated with pain processing, which were also correlated with reported pain intensity. There was no evidence for differences in activity in motor-related areas between groups, which contrasts with findings of previous research. CONCLUSIONS: Brain activity in patients with bruxism and TMD-related pain is correlated more with pain processing than with motoric differences.


Assuntos
Bruxismo , Transtornos da Articulação Temporomandibular , Humanos , Dor , Encéfalo , Meios de Contraste , Transtornos da Articulação Temporomandibular/diagnóstico por imagem
12.
J Clin Med ; 11(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268453

RESUMO

Exposure in vivo (EXP) is an effective treatment to reduce pain-related fear and disability in chronic pain populations. Yet, it remains unclear how reductions in fear and pain relate to each other. This single-case experimental design study attempted to identify patterns in the individual responses to EXP and to unravel temporal trajectories of fear and pain. Daily diaries were completed before, during and after EXP. Multilevel modelling analyses were performed to evaluate the overall effect. Temporal effects were scrutinized by individual regression analyses and determination of the time to reach a minimal clinically important difference. Furthermore, individual graphs were visually inspected for potential patterns. Twenty patients with chronic low back pain and complex regional pain syndrome type I were included. On a group level, both fear and pain were reduced following EXP. Individually, fear was significantly reduced in 65% of the patients, while pain in only 20%. A decrease in fear was seen mostly in the first weeks, while pain levels reduced later or remained unchanged. Daily measurements provided rich data on temporal trajectories of reductions in fear and pain. Overall, reductions in fear preceded pain relief and seemed to be essential to achieve pain reductions.

13.
Neuron ; 53(2): 307-14, 2007 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17224410

RESUMO

It is a commonly held view that numbers are represented in an abstract way in both parietal lobes. This view is based on failures to find differences between various notational representations. Here we show that by using relatively smaller voxels together with an adaptation paradigm and analyzing subjects on an individual basis it is possible to detect specialized numerical representations. The current results reveal a left/right asymmetry in parietal lobe function. In contrast to an abstract representation in the left parietal lobe, the numerical representation in the right parietal lobe is notation dependent and thus includes nonabstract representations. Our results challenge the commonly held belief that numbers are represented solely in an abstract way in the human brain.


Assuntos
Matemática , Processos Mentais/fisiologia , Lobo Parietal/fisiologia , Adaptação Fisiológica , Adulto , Dominância Cerebral/fisiologia , Humanos
14.
Biol Psychiatry Glob Open Sci ; 1(1): 28-36, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36324433

RESUMO

Background: A subset of patients with chronic pain who receive exposure in vivo (EXP) treatment experience clinically relevant relief of pain intensity. Although pain relief is not an explicit therapeutic target, it is important to understand how and why this concomitant effect occurs in some patients but not others. This longitudinal study therefore aimed to characterize brain plasticity as well as to explore pretreatment factors related to pain relief. Methods: Resting-state functional magnetic resonance imaging data were acquired in 30 patients with chronic pain. Twenty-three patients completed EXP, and 6-month follow-up data were available in 20 patients (magnetic resonance imaging data in 17 patients). Pain-free control data were acquired at two time points (n = 29, n = 21). Seed-based resting-state functional connectivity (rsFC) analyses were performed, with seeds in the amygdala, hippocampus, and nucleus accumbens. Results: Pain relief after EXP was highly variable, with 60% of patients reporting a clinically relevant improvement. Amygdala rsFC with the middle frontal gyrus decreased significantly over time in patients but was not associated with pain relief. In contrast, greater pain relief was associated with greater decreases over time in hippocampus rsFC with the precuneus, which was related to reductions in catastrophizing (EXP therapeutic target) as well. Greater pain relief was also associated with lower pretreatment rsFC between nucleus accumbens and postcentral gyrus. Conclusions: While changes in hippocampus rsFC were associated with pain relief after EXP, pretreatment nucleus accumbens rsFC showed potential prognostic value. Our findings further support the importance of corticolimbic circuitry in chronic pain, emphasizing its relation to pain relief and identifying potential underlying mechanisms and prognostic factors, warranting further testing in independent samples.

15.
Neuroimage ; 49(1): 794-804, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19646536

RESUMO

Visual imagery--similar to visual perception--activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral-occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1-3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.


Assuntos
Imaginação/fisiologia , Percepção de Movimento/fisiologia , Lobo Occipital/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Movimentos Oculares/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Memória de Curto Prazo/fisiologia , Oxigênio/sangue , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Retina/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Adulto Jovem
16.
Curr Biol ; 17(8): 689-93, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17379521

RESUMO

People suffering from developmental dyscalculia encounter difficulties in automatically accessing numerical magnitudes [1-3]. For example, when instructed to attend to the physical size of a number while ignoring its numerical value, dyscalculic subjects, unlike healthy participants, fail to process the irrelevant dimension automatically and subsequently show a smaller size-congruity effect (difference in reaction time between incongruent [e.g., a physically large 2 and a physically small 4] and congruent [e.g., a physically small 2 and a physically large 4] conditions), and no facilitation (neutral [e.g., a physically small 2 and a physically large 2] versus congruent) [3]. Previous imaging studies determined the intraparietal sulcus (IPS) as a central area for numerical processing [4-11]. A few studies tried to identify the brain dysfunction underlying developmental dyscalculia but yielded mixed results regarding the involvement of the left [12] or the right [13] IPS. Here we applied fMRI-guided TMS neuronavigation to disrupt left- or right-IPS activation clusters in order to induce dyscalculic-like behavioral deficits in healthy volunteers. Automatic magnitude processing was impaired only during disruption of right-IPS activity. When using the identical paradigm with dyscalculic participants, we reproduced a result pattern similar to that obtained with nondyscalculic volunteers during right-IPS disruption. These findings provide direct evidence for the functional role of right IPS in automatic magnitude processing.


Assuntos
Mapeamento Encefálico , Matemática , Lobo Parietal/fisiologia , Estimulação Magnética Transcraniana , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tempo de Reação
17.
Scand J Pain ; 20(4): 809-819, 2020 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-32712594

RESUMO

Objectives Contemporary fear-avoidance models of chronic pain posit that fear of pain, and overgeneralization of fear to non-threatening stimuli is a potential pathway to chronic pain. While increasing experimental evidence supports this hypothesis, a comprehensive investigation requires testing in multiple modalities due to the diversity of symptomatology among individuals with chronic pain. In the present study we used an established tactile fear conditioning paradigm as an experimental model of allodynia and spontaneous pain fluctuations, to investigate whether stimulus generalization occurs resulting in fear of touch spreading to new locations. Methods In our paradigm, innocuous touch is presented either paired (predictable context) or unpaired (unpredictable context) with a painful electrocutaneous stimulus (pain-US). In the predictable context, vibrotactile stimulation to the index or little finger was paired with the pain-US (CS+), whilst stimulation of the other finger was never paired with pain (CS-). In the unpredictable context, vibrotactile stimulation to the index and little fingers of the opposite hand (CS1 and CS2) was unpaired with pain, but pain-USs occurred unpredictable during the intertrial interval. During the subsequent generalization phase, we tested the spreading of conditioned responses (self-reported fear of touch and pain expectancy) to the (middle and ring) fingers between the CS+ and CS-, and between the CS1 and CS2. Results Differential fear acquisition was evident in the predictable context from increased self-reported pain expectancy and self-reported fear for the CS + compared to the CS-. However, expectancy and fear ratings to the novel generalization stimuli (GS+ and GS-) were comparable to the responses elicited by the CS-. Participants reported equal levels of pain expectancy and fear to the CS1 and CS2 in the unpredictable context. However, the acquired fear did not spread in this context either: participants reported less pain expectancy and fear to the GS1 and GS2 than to the CS1 and CS2. As in our previous study, we did not observe differential acquisition in the startle responses. Conclusions Whilst our findings for the acquisition of fear of touch replicate the results from our previous study (Biggs et al., 2017), there was no evidence of fear generalization. We discuss the limitations of the present study, with a primary focus on procedural issues that were further investigated with post-hoc analyses, concluding that the present results do not show support for the hypothesis that stimulus generalization underlies spreading of fear of touch to new locations, and discuss how this may be the consequence of a context change that prevented transfer of acquisition.


Assuntos
Medo/psicologia , Dor/psicologia , Tato , Adulto , Condicionamento Clássico , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Adulto Jovem
18.
Neurosci Biobehav Rev ; 119: 52-65, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33011229

RESUMO

Compared to the field of anxiety research, the use of fear conditioning paradigms for studying chronic pain is relatively novel. Developments in identifying the neural correlates of pain-related fear are important for understanding the mechanisms underlying chronic pain and warrant synthesis to establish the state-of-the-art. Using effect-size signed differential mapping, this meta-analysis combined nine MRI studies and compared the overlap in these correlates of pain-related fear to those of other non-pain-related conditioned fears (55 studies). Pain-related fear was characterized by neural activation of the supramarginal gyrus, middle temporal gyrus, inferior/middle frontal gyri, frontal operculum and insula, pre-/post-central gyri, medial frontal and (para-)cingulate cortex, hippocampus, thalamus, and putamen. There were differences with other non-pain-related conditioned fears, specifically in the inferior frontal gyrus, medial superior frontal gyrus, post-central gyrus, middle temporal gyrus, parieto-occipital sulcus, and striatum. We conclude that pain-related and non-pain-related conditioned fears recruit overlapping but distinguishable networks, with potential implications for understanding the mechanisms underlying different psychopathologies.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Medo , Hipocampo , Humanos , Imageamento por Ressonância Magnética
19.
Neuroimage ; 45(4): 1264-71, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19349239

RESUMO

In the human brain information about bodies and faces is processed in specialized cortical regions named EBA and FBA (extrastriate and fusiform body area) and OFA and FFA (occipital and fusiform face area), respectively. Here we investigate with functional magnetic resonance imaging (fMRI) the cortical areas responsible for the identification of individual bodies and the distinction between 'self' and 'others'. To this end we presented subjects with images of unfamiliar and familiar bodies and their own body. We identified separate coactivation networks for body-detection (processing body related information), body-identification (processing of information relating to individual bodies) and self-identification (distinction of self from others). Body detection involves the EBA in both hemispheres, and in the right hemisphere: the FBA and areas in the IPL (inferior parietal lobe). Body identification involves areas in the inferior frontal gyrus (IFG) of both hemispheres and in the right hemisphere areas in the medial frontal gyrus (MFG), in the cingulate gyrus (CG), in the central (CS) and the post-central sulcus (PCS), in the inferior parietal lobe (IPL) and the FBA. When the recognition of one's own body is contrasted to the identification of familiar bodies, differential activation is observed in areas of the inferior parietal lobe (IPL) and inferior parietal sulcus (IPS) of the right hemisphere, and in the posterior orbital gyrus (pOrbG) and in the lateral occipital gyrus (LOG) of the left hemisphere. Thus, identification of individual bodies and self-other distinction involve in addition to the classical occipito-parietal network a parieto-frontal network. Interestingly, the EBA shows no differential activation for distinctions between familiar or unfamiliar bodies or recognition of one's own body.


Assuntos
Imagem Corporal , Córtex Cerebral/fisiologia , Comportamento de Escolha/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Feminino , Humanos , Masculino
20.
Front Hum Neurosci ; 13: 427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920588

RESUMO

Real-time functional magnetic resonance imaging (fMRI) is a promising non-invasive method for brain-computer interfaces (BCIs). BCIs translate brain activity into signals that allow communication with the outside world. Visual and motor imagery are often used as information-encoding strategies, but can be challenging if not grounded in recent experience in these modalities, e.g., in patients with locked-in-syndrome (LIS). In contrast, somatosensory imagery might constitute a more suitable information-encoding strategy as the somatosensory function is often very robust. Somatosensory imagery has been shown to activate the somatotopic cortex, but it has been unclear so far whether it can be reliably detected on a single-trial level and successfully classified according to specific somatosensory imagery content. Using ultra-high field 7-T fMRI, we show reliable and high-accuracy single-trial decoding of left-foot (LF) vs. right-hand (RH) somatosensory imagery. Correspondingly, higher decoding accuracies were associated with greater spatial separation of hand and foot decoding-weight patterns in the primary somatosensory cortex (S1). Exploiting these novel neuroscientific insights, we developed-and provide a proof of concept for-basic BCI communication by showing that binary (yes/no) answers encoded by somatosensory imagery can be decoded with high accuracy in simulated real-time (in 7 subjects) as well as in real-time (1 subject). This study demonstrates that body part-specific somatosensory imagery differentially activates somatosensory cortex in a topographically specific manner; evidence which was surprisingly still lacking in the literature. It also offers proof of concept for a novel somatosensory imagery-based fMRI-BCI control strategy, with particularly high potential for visually and motor-impaired patients. The strategy could also be transferred to lower MRI field strengths and to mobile functional near-infrared spectroscopy. Finally, given that communication BCIs provide the BCI user with a form of feedback based on their brain signals and can thus be considered as a specific form of neurofeedback, and that repeated use of a BCI has been shown to enhance underlying representations, we expect that the current BCI could also offer an interesting new approach for somatosensory rehabilitation training in the context of stroke and phantom limb pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA