Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(26): 14978-14986, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554490

RESUMO

AB5 bacterial toxins and polyomaviruses induce membrane curvature as a mechanism to facilitate their entry into host cells. How membrane bending is accomplished is not yet fully understood but has been linked to the simultaneous binding of the pentameric B subunit to multiple copies of glycosphingolipid receptors. Here, we probe the toxin membrane binding and internalization mechanisms by using a combination of superresolution and polarized localization microscopy. We show that cholera toxin subunit B (CTxB) can induce membrane curvature only when bound to multiple copies of its glycosphingolipid receptor, GM1, and the ceramide structure of GM1 is likely not a determinant of this activity as assessed in model membranes. A mutant CTxB capable of binding only a single GM1 fails to generate curvature either in model membranes or in cells, and clustering the mutant CTxB-single-GM1 complexes by antibody cross-linking does not rescue the membrane curvature phenotype. We conclude that both the multiplicity and specific geometry of GM1 binding sites are necessary for the induction of membrane curvature. We expect this to be a general rule of membrane behavior for all AB5 toxins and polyomaviruses that bind glycosphingolipids to invade host cells.


Assuntos
Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Toxina da Cólera/farmacologia , Receptores de Superfície Celular/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Receptores de Superfície Celular/genética
2.
Membranes (Basel) ; 7(4)2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-29057801

RESUMO

Recent advances in nanoengineering and super-resolution microscopy have enabled new capabilities for creating and observing membrane curvature. However, the effects of curvature on single-lipid diffusion have yet to be revealed. The simulations presented here describe the capabilities of varying experimental methods for revealing the effects of nanoscale curvature on single-molecule mobility. Traditionally, lipid mobility is revealed through fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single particle tracking (SPT). However, these techniques vary greatly in their ability to detect the effects of nanoscale curvature on lipid behavior. Traditionally, FRAP and FCS depend on diffraction-limited illumination and detection. A simulation of FRAP shows minimal effects on lipids diffusion due to a 50 nm radius membrane bud. Throughout the stages of the budding process, FRAP detected minimal changes in lipid recovery time due to the curvature versus flat membrane. Simulated FCS demonstrated small effects due to a 50 nm radius membrane bud that was more apparent with curvature-dependent lipid mobility changes. However, SPT achieves a sub-diffraction-limited resolution of membrane budding and lipid mobility through the identification of the single-lipid positions with ≤15 nm spatial and ≤20 ms temporal resolution. By mapping the single-lipid step lengths to locations on the membrane, the effects of membrane topography and curvature could be correlated to the effective membrane viscosity. Single-fluorophore localization techniques, such SPT, can detect membrane curvature and its effects on lipid behavior. These simulations and discussion provide a guideline for optimizing the experimental procedures in revealing the effects of curvature on lipid mobility and effective local membrane viscosity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA