Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0295518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096161

RESUMO

Multi-location experiments on maize were conducted from 2016 to 2019 at ten locations distributed across two agro-climatic zones (ACZ) i.e., ACZ-3 and ACZ-8 of Karnataka, India. Individual analysis of variance for each location-year combination showed significant differences among the hybrids; similarly, combined analysis showed a higher proportion of GE interaction variance than due to genotype. Mega-environments were identified using biplot approaches such as AMMI, GGE, and WAASB methodologies for the years 2016 to 2019. The BLUP method revealed a high correlation between grain yield and stability indices ranging from 0.67 to 1.0. Considering all three methods together, the three location pairs Arabhavi-Belavatagi, Bailhongal-Belavatagi, and Hagari-Sirguppa had three occurrences in the same mega-environment with a value of 0.67, and these location combinations consistently produced winning genotypes. Among the common winning genotypes identified, it was G7 during 2016 and 2017 and G10 during 2018 and 2019, based on WAASBY. The likelihood of Arabhavi-Nippani, Hagari-Mudhol, and Dharwad-Hagari occurring in the same mega-environment is minimal because they did not share the same winning genotype, with the exception of a small number of events. Despite being in the same agro-climatic zone, Arabhavi, Hagari, and Mudhol rarely had a winning genotype in common. An agro-climatic zone is grouped based on climatic and soil conditions which doesn't consider GE interaction of cultivars thus, releasing the cultivars for commercial cultivation considering mega environments pattern would enhance the yield for the given target region.


Assuntos
Grão Comestível , Zea mays , Zea mays/genética , Índia , Genótipo , Solo
2.
Sci Rep ; 10(1): 21949, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319847

RESUMO

Northern Corn Leaf Blight (NCLB) caused by Setosphaeria turcica, is one of the most important diseases of maize world-wide, and one of the major reasons behind yield losses in maize crop in Asia. In the present investigation, a high-resolution genome wide association study (GWAS) was conducted for NCLB resistance in three association mapping panels, predominantly consisting of tropical lines adapted to different agro-ecologies. These panels were phenotyped for disease severity across three locations with high disease prevalence in India. High density SNPs from Genotyping-by-sequencing were used in GWAS, after controlling for population structure and kinship matrices, based on single locus mixed linear model (MLM). Twenty-two SNPs were identified, that revealed a significant association with NCLB in the three mapping panels. Haplotype regression analysis revealed association of 17 significant haplotypes at FDR ≤ 0.05, with two common haplotypes across three maize panels. Several of the significantly associated SNPs/haplotypes were found to be co-located in chromosomal bins previously reported for major genes like Ht2, Ht3 and Htn1 and QTL for NCLB resistance and multiple foliar disease resistance. Phenotypic variance explained by these significant SNPs/haplotypes ranged from low to moderate, suggesting a breeding strategy of combining multiple resistance alleles towards resistance for NCLB.


Assuntos
Ascomicetos/patogenicidade , Genoma de Planta , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Zea mays/microbiologia , Genótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA