Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 15(1): 1539-1547, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33417424

RESUMO

A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.

2.
Nat Commun ; 12(1): 2049, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824340

RESUMO

While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvature or through various asymmetric scattering mechanisms. Here, we report the observation of an extremely large c-axis nonlinear anomalous Hall effect in the non-centrosymmetric Td phase of MoTe2 and WTe2 without intrinsic magnetic order. We find that the effect is dominated by skew-scattering at higher temperatures combined with another scattering process active at low temperatures. Application of higher bias yields an extremely large Hall ratio of E⊥/E|| = 2.47 and corresponding anomalous Hall conductivity of order 8 × 107 S/m.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA