Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 22(5): 875-883, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30848045

RESUMO

When herbivorous insects interact, they can increase or decrease each other's fitness. As it stands, we know little of what causes this variation. Classic competition theory predicts that competition will increase with niche overlap and population density. And classic hypotheses of herbivorous insect diversification predict that diet specialists will be superior competitors to generalists. Here, we test these predictions using phylogenetic meta-analysis. We estimate the effects of diet breadth, population density and proxies of niche overlap: phylogenetic relatedness, physical proximity and feeding-guild membership. As predicted, we find that competition between herbivorous insects increases with population density as well as phylogenetic and physical proximity. Contrary to predictions, competition tends to be stronger between than within feeding guilds and affects specialists as much as generalists. This is the first statistical evidence that niche overlap increases competition between herbivorous insects. However, niche overlap is not everything; complex feeding guild effects indicate important indirect interactions.


Assuntos
Herbivoria , Insetos , Animais , Dieta , Filogenia
2.
Commun Biol ; 5(1): 796, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941371

RESUMO

Across herbivorous insect clades, species richness and host-use diversity tend to positively covary. This could be because host-use divergence drives speciation, or because it raises the ecological limits on species richness. To evaluate these hypotheses, we performed phylogenetic path model analyses of the species diversity of Nearctic aphids. Here, we show that variation in the species richness of aphid clades is caused mainly by host-use divergence, whereas variation in speciation rates is caused more by divergence in non-host-related niche variables. Aphid speciation is affected by both the evolution of host and non-host-related niche components, but the former is largely caused by the latter. Thus, our analyses suggest that host-use divergence can both raise the ecological limits on species richness and drive speciation, although in the latter case, host-use divergence tends to be a step along the causal path leading from non-host-related niche evolution to speciation.


Assuntos
Afídeos , Animais , Afídeos/genética , Herbivoria , Insetos , Filogenia
3.
Ecol Evol ; 10(8): 3636-3646, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313623

RESUMO

The Escape and Radiate Hypothesis posits that herbivorous insects and their host plants diversify through antagonistic coevolutionary adaptive radiation. For more than 50 years, it has inspired predictions about herbivorous insect macro-evolution, but only recently have the resources begun to fall into place for rigorous testing of those predictions. Here, with comparative phylogenetic analyses of nymphalid butterflies, we test two of these predictions: that major host switches tend to increase species diversification and that such increases will be proportional to the scope of ecological opportunity afforded by a particular novel host association. We find that by and large the effect of major host-use changes on butterfly diversity is the opposite of what was predicted; although it appears that the evolution of a few novel host associations can cause short-term bursts of speciation, in general, major changes in host use tend to be linked to significant long-term decreases in butterfly species richness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA