Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(14): 145005, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765980

RESUMO

We have employed fast electrons produced by intense laser illumination to isochorically heat thermal electrons in solid density carbon to temperatures of ∼10,000 K. Using time-resolved x-ray diffraction, the temperature evolution of the lattice ions is obtained through the Debye-Waller effect, and this directly relates to the electron-ion equilibration rate. This is shown to be considerably lower than predicted from ideal plasma models. We attribute this to strong ion coupling screening the electron-ion interaction.

2.
Phys Rev Lett ; 110(12): 125001, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166812

RESUMO

In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 × 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 × 10(18) W/cm(2) and is in the 3 keV range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA