Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Intern Med ; 271(3): 257-63, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21726302

RESUMO

OBJECTIVE: To investigate whether there is an increased risk of cardiac events with a combined therapy of clopidogrel and proton pump inhibitors (PPIs) after percutaneous coronary intervention (PCI). DESIGN: In the BAsel Stent Kosten Effektivitäts Trial (BASKET), all patients undergoing PCI received 6 months of clopidogrel and were analysed for the use of PPI therapy. Endpoints were major adverse cardiac events (MACE), myocardial infarction (MI), death and target vessel revascularization (TVR) after 36 months. RESULTS: Of 801 patients with available discharge medication data, 109 (14%) received PPIs. Patients who received PPIs were older (66.5 ± 10.5 vs. 63.3 ± 11.3 years, P = 0.006), more likely to be woman (80% vs. 69%, P = 0.009) and have a history of diabetes (29.6% vs. 17.3%, P = 0.002) or gastrointestinal ulcer disease (8.3% vs. 3.3%, P = 0.015) and more often received nonsteroidal anti-inflammatory drugs (7.3% vs. 2.2%, P = 0.003) and corticosteroids (11% vs. 3.6%, P = 0.001) but not aspirin (91.7% vs. 97%, P = 0.008) compared with those who did not receive PPIs. Patients who received PPI therapy had higher rates of MACE (30.3% vs. 20.8%, P = 0.027) and MI (14.7% vs. 7.4%, P = 0.01) but similar rates of death (9.2% vs. 7.4%, P = 0.51) and TVR (20.2% vs. 15.3%, P = 0.2) compared with those who did not. By multivariate analysis, diabetes (hazard ratio 1.83, 95% confidence interval 1.07-3.15) and PPI use (hazard ratio 1.88, 95% confidence interval 1.05-3.37) were the only independent risk factors for MI. CONCLUSION: In a real-world PCI population, the combination of PPIs and clopidogrel was associated with a doubling of MI rates after 3 years. Even after correction for confounding factors, concomitant PPI use remained an independent predictor of outcome emphasizing the clinical importance of this drug-drug interaction.


Assuntos
Aspirina/efeitos adversos , Infarto do Miocárdio/induzido quimicamente , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Ticlopidina/análogos & derivados , Idoso , Angioplastia Coronária com Balão/métodos , Doenças Cardiovasculares/terapia , Clopidogrel , Interações Medicamentosas , Quimioterapia Combinada , Stents Farmacológicos , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Ticlopidina/efeitos adversos
2.
Nat Cell Biol ; 1(3): 130-5, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10559898

RESUMO

It has long been assumed that the oxidized form of glutathione, the tripeptide glutamate-cysteine-glycine, is a source of oxidizing equivalents needed for the formation of disulphide bonds in proteins within the endoplasmic reticulum (ER), although the in vivo function of glutathione in the ER has never been studied directly. Here we show that the major pathway for oxidation in the yeast ER, defined by the protein Ero1, is responsible for the oxidation of both glutathione and protein thiols. However, mutation and overexpression studies show that glutathione competes with protein thiols for the oxidizing machinery. Thus, contrary to expectation, cellular glutathione contributes net reducing equivalents to the ER; these reducing equivalents can buffer the ER against transient hyperoxidizing conditions.


Assuntos
Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Proteínas Fúngicas/genética , Genótipo , Dissulfeto de Glutationa/metabolismo , Cinética , Modelos Químicos , Oxirredução , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/genética , Compostos de Sulfidrila/metabolismo
3.
Nat Cell Biol ; 3(10): 874-82, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11584268

RESUMO

Ero1 and Pdi1 are essential elements of the pathway for the formation of disulphide bonds within the endoplasmic reticulum (ER). By screening for alternative oxidation pathways in Saccharomyces cerevisiae, we identified ERV2 as a gene that when overexpressed can restore viability and disulphide bond formation to an ero1-1 mutant strain. ERV2 encodes a luminal ER protein of relative molecular mass 22,000. Purified recombinant Erv2p is a flavoenzyme that can catalyse O2-dependent formation of disulphide bonds. Erv2p transfers oxidizing equivalents to Pdi1p by a dithiol-disulphide exchange reaction, indicating that the Erv2p-dependent pathway for disulphide bond formation closely parallels that of the previously identified Ero1p-dependent pathway.


Assuntos
Dissulfetos/metabolismo , Retículo Endoplasmático/enzimologia , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxirredutases , Isomerases de Dissulfetos de Proteínas , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
4.
Trends Cell Biol ; 10(5): 203-10, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10754564

RESUMO

The folding of many secretory proteins depends upon the formation of disulphide bonds. Recent advances in genetics and cell biology have outlined a core pathway for disulphide bond formation in the endoplasmic reticulum (ER) of eukaryotic cells. In this pathway, oxidizing equivalents flow from the recently identified ER membrane protein Ero1p to secretory proteins via protein disulphide isomerase (PDI). Contrary to prior expectations, oxidation of glutathione in the ER competes with oxidation of protein thiols. Contributions of PDI homologues to the catalysis of oxidative folding will be discussed, as will similarities between eukaryotic and prokaryotic disulphide-bond-forming systems.


Assuntos
Cisteína/metabolismo , Dissulfetos/metabolismo , Glicoproteínas de Membrana , Dobramento de Proteína , Animais , Dissulfetos/química , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Humanos , Oxirredução , Oxirredutases , Isomerases de Dissulfetos de Proteínas/metabolismo
5.
J Cell Biol ; 131(2): 325-38, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7593162

RESUMO

SEC16 is required for transport vesicle budding from the ER in Saccharomyces cerevisiae, and encodes a large hydrophilic protein found on the ER membrane and as part of the coat of transport vesicles. In a screen to find functionally related genes, we isolated SED4 as a dosage-dependent suppressor of temperature-sensitive SEC16 mutations. Sed4p is an integral ER membrane protein whose cytosolic domain binds to the COOH-terminal domain of Sec16p as shown by two-hybrid assay and coprecipitation. The interaction between Sed4p and Sec16p probably occurs before budding is complete, because Sed4p is not found in budded vesicles. Deletion of SED4 decreases the rate of ER to Golgi transport, and exacerbates mutations defective in vesicle formation, but not those that affect later steps in the secretory pathway. Thus, Sed4p is important, but not necessary, for vesicle formation at the ER. Sec12p, a close homologue of Sed4p, also acts early in the assembly of transport vesicles. However, SEC12 performs a different function than SED4 since Sec12p does not bind Sec16p, and genetic tests show that SEC12 and SED4 are not functionally interchangeable. The importance of Sed4p for vesicle formation is underlined by the isolation of a phenotypically silent mutation, sar1-5, that produces a strong ER to Golgi transport defect when combined with sed4 mutations. Extensive genetic interactions between SAR1, SED4, and SEC16 show close functional links between these proteins and imply that they might function together as a multisubunit complex on the ER membrane.


Assuntos
Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Bases , Clonagem Molecular , Grânulos Citoplasmáticos/fisiologia , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Deleção de Genes , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Temperatura
6.
J Cell Biol ; 137(7): 1469-82, 1997 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-9199164

RESUMO

In mammalian cells, extracellular signals can regulate the delivery of particular proteins to the plasma membrane. We have discovered a novel example of regulated protein sorting in the late secretory pathway of Saccharomyces cerevisiae. In yeast cells grown on either ammonia or urea medium, the general amino acid permease (Gap1p) is transported from the Golgi complex to the plasma membrane, whereas, in cells grown on glutamate medium, Gap1p is transported from the Golgi to the vacuole. We have also found that sorting of Gap1p in the Golgi is controlled by SEC13, a gene previously shown to encode a component of the COPII vesicle coat. In sec13 mutants grown on ammonia, Gap1p is transported from the Golgi to the vacuole, instead of to the plasma membrane. Deletion of PEP12, a gene required for vesicular transport from the Golgi to the prevacuolar compartment, counteracts the effect of the sec13 mutation and partially restores Gap1p transport to the plasma membrane. Together, these studies demonstrate that both a nitrogen-sensing mechanism and Sec13p control Gap1p transport from the Golgi to the plasma membrane.


Assuntos
Membrana Celular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Saccharomyces cerevisiae/fisiologia , Sistemas de Transporte de Aminoácidos , Transporte Biológico , Proteínas Fúngicas/fisiologia , Microscopia de Fluorescência , Saccharomyces cerevisiae/ultraestrutura
7.
J Cell Biol ; 135(3): 623-33, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8909538

RESUMO

We have evaluated the fate of misfolded protein domains in the Saccharomyces cerevisiae secretory pathway by fusing mutant forms of the NH2-terminal domain of lambda repressor protein to the secreted protein invertase. The hybrid protein carrying the wild-type repressor domain is mostly secreted to the cell surface, whereas hybrid proteins with amino acid substitutions that cause the repressor domain to be thermodynamically unstable are retained intracellularly. Surprisingly, the retained hybrids are found in the vacuole, where the repressor moiety is degraded by vacuolar proteases. The following observations indicate that receptor-mediated recognition of the mutant repressor domain in the Golgi lumen targets these hybrid fusions to the vacuole. (a) The invertase-repressor fusions, like wild-type invertase, behave as soluble proteins in the ER lumen. (b) Targeting to the vacuole is saturable since overexpression of the hybrids carrying mutant repressor increases the fraction of fusion protein that appears at the cell surface. (c) Finally, deletion of the VPS10 gene, which encodes the transmembrane Golgi receptor responsible for targeting carboxypeptidase Y to the vacuole, causes the mutant hybrids to be diverted to the cell surface. Together these findings suggest that yeast have a salvage pathway for degradation of nonnative luminal proteins by receptor-mediated transport to the vacuole.


Assuntos
Proteínas de Ligação a DNA , Glicosídeo Hidrolases/metabolismo , Dobramento de Proteína , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Transporte Biológico , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Mutação , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Solubilidade , Vacúolos/enzimologia , Proteínas Virais , Proteínas Virais Reguladoras e Acessórias , beta-Frutofuranosidase
8.
J Cell Biol ; 153(4): 649-62, 2001 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11352928

RESUMO

Gap1p, the general amino acid permease of Saccharomyces cerevisiae, is regulated by intracellular sorting decisions that occur in either Golgi or endosomal compartments. Depending on nitrogen source, Gap1p is transported to the plasma membrane, where it functions for amino acid uptake, or to the vacuole, where it is degraded. We found that overexpression of Bul1p or Bul2p, two nonessential components of the Rsp5p E3-ubiquitin ligase complex, causes Gap1p to be sorted to the vacuole regardless of nitrogen source. The double mutant bul1Delta bul2Delta has the inverse phenotype, causing Gap1p to be delivered to the plasma membrane more efficiently than in wild-type cells. In addition, bul1Delta bul2Delta can reverse the effect of lst4Delta, a mutation that normally prevents Gap1p from reaching the plasma membrane. Evaluation of Gap1p ubiquitination revealed a prominent polyubiquitinated species that was greatly diminished in a bul1Delta bul2Delta mutant. Both a rsp5-1 mutant and a COOH-terminal truncation of Gap1p behave as bul1Delta bul2Delta, causing constitutive delivery of Gap1p to the plasma membrane and decreasing Gap1p polyubiquitination. These results indicate that Bul1p and Bul2p, together with Rsp5p, generate a polyubiquitin signal on Gap1p that specifies its intracellular targeting to the vacuole.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi/enzimologia , Ligases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , Sistemas de Transporte de Aminoácidos , Radioisótopos de Carbono , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citrulina/farmacocinética , Complexos Endossomais de Distribuição Requeridos para Transporte , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/química , Plasmídeos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Vacúolos/enzimologia
9.
J Cell Biol ; 128(5): 769-77, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7876304

RESUMO

In the yeast Saccharomyces cerevisiae, Sec13p is required for intracellular protein transport from the ER to the Golgi apparatus, and has also been identified as a component of the COPII vesicle coat structure. Recently, a human cDNA encoding a protein 53% identical to yeast Sec13p has been isolated. In this report, we apply the genetic assays of complementation and synthetic lethality to demonstrate the conservation of function between this human protein, designated SEC13Rp, and yeast Sec13p. We show that two reciprocal human/yeast fusion constructs, encoding the NH2-terminal half of one protein and the COOH-terminal half of the other, can each complement the secretion defect of a sec13-1 mutant at 36 degrees C. The chimera encoding the NH2-terminal half of the yeast protein and the COOH-terminal half of the human protein is also able to complement a SEC13 deletion. Overexpression of either the entire human SEC13Rp protein or the chimera encoding the NH2-terminal half of the human protein and the COOH-terminal half of the yeast protein inhibits the growth of a sec13-1 mutant at 24 degrees C; this growth inhibition is not seen in a wild-type strain nor in other sec mutants, suggesting that the NH2-terminal half of SEC13Rp may compete with Sec13-1p for a common target. We show by immunoelectronmicroscopy of mammalian cells that SEC13Rp (like the putative mammalian homologues of the COPII subunits Sar1p and Sec23p) resides in the region of the transitional ER. We also show that the distribution of SEC13Rp is not affected by brefeldin A treatment. This report presents the first demonstration of a putative mammalian COPII component functioning in yeast, and highlights a potentially useful approach for the study of conserved mammalian proteins in a genetically tractable system.


Assuntos
Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/fisiologia , Membranas Intracelulares/fisiologia , Proteínas de Membrana/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Transporte Biológico , Células CHO , Compartimento Celular , Células Cultivadas , Cricetinae , Imunofluorescência , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Teste de Complementação Genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares , Pâncreas/ultraestrutura , Ratos , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
10.
J Cell Biol ; 120(4): 865-75, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8432727

RESUMO

The SEC13 gene of Saccharomyces cerevisiae is required in vesicle biogenesis at a step before or concurrent with the release of transport vesicles from the ER membrane. SEC13 encodes a 33-kD protein with sequence homology to a series of conserved internal repeat motifs found in beta subunits of heterotrimeric G proteins. The product of this gene, Sec13p, is a cytosolic protein peripherally associated with membranes. We developed a cell-free Sec13p-dependent vesicle formation reaction. Sec13p-depleted membranes and cytosol fractions were generated by urea treatment of membranes and affinity depletion of a Sec13p-dihydrofolate reductase fusion protein, respectively. These fractions were unable to support vesicle formation from the ER unless cytosol containing Sec13p was added. Cytosolic Sec13p fractionated by gel filtration as a large complex of about 700 kD. Fractions containing the Sec13p complex restored activity to the Sec13p- dependent vesicle formation reaction. Expression of SEC13 on a multicopy plasmid resulted in overproduction of a monomeric form of Sec13p, suggesting that another member of the complex becomes limiting when Sec13p is overproduced. Overproduced, monomeric Sec13p was inactive in the Sec13p-dependent vesicle formation assay.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Organelas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sequência Consenso , Genes Fúngicos , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese Insercional , Complexo de Proteínas Formadoras de Poros Nucleares , Mapeamento por Restrição , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência
11.
J Cell Biol ; 131(2): 311-24, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7593161

RESUMO

Temperature-sensitive mutations in the SEC16 gene of Saccharomyces cerevisiae block budding of transport vesicles from the ER. SEC16 was cloned by complementation of the sec16-1 mutation and encodes a 240-kD protein located in the insoluble, particulate component of cell lysates. Sec16p is released from this particulate fraction by high salt, but not by nonionic detergents or urea. Some Sec16p is localized to the ER by immunofluorescence microscopy. Membrane-associated Sec16p is incorporated into transport vesicles derived from the ER that are formed in an in vitro vesicle budding reaction. Sec16p binds to Sec23p, a COPII vesicle coat protein, as shown by the two-hybrid interaction assay and affinity studies in cell extracts. These findings indicate that Sec16p associates with Sec23p as part of the transport vesicle coat structure. Genetic analysis of SEC16 identifies three functionally distinguishable domains. One domain is defined by the five temperature-sensitive mutations clustered in the middle of SEC16. Each of these mutations can be complemented by the central domain of SEC16 expressed alone. The stoichiometry of Sec16p is critical for secretory function since overexpression of Sec16p causes a lethal secretion defect. This lethal function maps to the NH2-terminus of the protein, defining a second functional domain. A separate function for the COOH-terminal domain of Sec16p is shown by its ability to bind Sec23p. Together, these results suggest that Sec16p engages in multiple protein-protein interactions both on the ER membrane and as part of the coat of a completed vesicle.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Sequência de Bases , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Clonagem Molecular , Proteínas Fúngicas/isolamento & purificação , Proteínas Ativadoras de GTPase , Deleção de Genes , Complexo de Golgi/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Temperatura
12.
J Cell Biol ; 145(4): 659-72, 1999 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-10330397

RESUMO

In Saccharomyces cerevisiae, vesicles that carry proteins from the ER to the Golgi compartment are encapsulated by COPII coat proteins. We identified mutations in ten genes, designated LST (lethal with sec-thirteen), that were lethal in combination with the COPII mutation sec13-1. LST1 showed synthetic-lethal interactions with the complete set of COPII genes, indicating that LST1 encodes a new COPII function. LST1 codes for a protein similar in sequence to the COPII subunit Sec24p. Like Sec24p, Lst1p is a peripheral ER membrane protein that binds to the COPII subunit Sec23p. Chromosomal deletion of LST1 is not lethal, but inhibits transport of the plasma membrane proton-ATPase (Pma1p) to the cell surface, causing poor growth on media of low pH. Localization by both immunofluorescence microscopy and cell fractionation shows that the export of Pma1p from the ER is impaired in lst1Delta mutants. Transport of other proteins from the ER was not affected by lst1Delta, nor was Pma1p transport found to be particularly sensitive to other COPII defects. Together, these findings suggest that a specialized form of the COPII coat subunit, with Lst1p in place of Sec24p, is used for the efficient packaging of Pma1p into vesicles derived from the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Membrana Celular/enzimologia , Proteínas Fúngicas/genética , Proteínas Ativadoras de GTPase , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Science ; 235(4786): 312-7, 1987 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-3541205

RESUMO

In the process of protein secretion, amino-terminal signal sequences are key recognition elements; however, the relation between the primary sequence of an amino-terminal peptide and its ability to function as an export signal remains obscure. The limits of variation permitted for functional signal sequences were determined by replacement of the normal signal sequence of Saccharomyces cerevisiae invertase with essentially random peptide sequences. Since about one-fifth of these sequences can function as an export signal the specificity with which signal sequences are recognized must be very low.


Assuntos
Glicosídeo Hidrolases/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Sequência de Aminoácidos , Citoplasma/enzimologia , Espaço Extracelular/enzimologia , Glicosilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , beta-Frutofuranosidase
14.
J Clin Invest ; 100(11): 2858-64, 1997 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9389752

RESUMO

Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin-treated adipose tissue.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Proteínas/farmacologia , Receptores de Superfície Celular , Tiazolidinedionas , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Janus Quinase 1 , Leptina , Lipase Lipoproteica/biossíntese , Lipase Lipoproteica/genética , Malato Desidrogenase/biossíntese , Malato Desidrogenase/genética , Masculino , Proteína P2 de Mielina/biossíntese , Proteína P2 de Mielina/genética , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores para Leptina , Rosiglitazona , Fator de Transcrição STAT1 , Tiazóis/farmacologia , Transativadores/metabolismo
15.
Mol Cell Biol ; 6(7): 2382-91, 1986 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-3537718

RESUMO

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


Assuntos
Glicosídeo Hidrolases/genética , Mutação , Saccharomyces cerevisiae/enzimologia , Alelos , Sequência de Aminoácidos , Sequência de Bases , Fracionamento Celular , Deleção Cromossômica , Mapeamento Cromossômico , Glicosilação , Peso Molecular , Fenótipo , Plasmídeos , Saccharomyces cerevisiae/genética , beta-Frutofuranosidase
16.
Mol Cell Biol ; 10(6): 3163-73, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2160595

RESUMO

Three randomly derived sequences that can substitute for the signal peptide of Saccharomyces cerevisiae invertase were tested for the efficiency with which they can translocate invertase or beta-galactosidase into the endoplasmic reticulum. The rate of translocation, as measured by glycosylation, was estimated in pulse-chase experiments to be less than 6 min. When fused to beta-galactosidase, these peptides, like the normal invertase signal sequence, direct the hybrid protein to a perinuclear region, consistent with localization to the endoplasmic reticulum. The diversity of function of random peptides was studied further by immunofluorescence localization of proteins fused to 28 random sequences: 4 directed the hybrid to the endoplasmic reticulum, 3 directed it to the mitochondria, and 1 directed it to the nucleus.


Assuntos
Galactosidases/genética , Glicosídeo Hidrolases/genética , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas/genética , Saccharomyces cerevisiae/genética , beta-Galactosidase/genética , Sequência de Aminoácidos , Sequência de Bases , DNA/genética , Elementos de DNA Transponíveis , Imunofluorescência , Biblioteca Gênica , Glicosídeo Hidrolases/análise , Glicosilação , Humanos , Dados de Sequência Molecular , Plasmídeos , Proteínas Recombinantes de Fusão/análise , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência do Ácido Nucleico , beta-Frutofuranosidase , beta-Galactosidase/análise
17.
Mol Cell Biol ; 18(12): 7139-46, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9819400

RESUMO

Secretory proteins in eukaryotic cells are transported to the cell surface via the endoplasmic reticulum (ER) and the Golgi apparatus by membrane-bounded vesicles. We screened a collection of temperature-sensitive mutants of Saccharomyces cerevisiae for defects in ER-to-Golgi transport. Two of the genes identified in this screen were PRP2, which encodes a known pre-mRNA splicing factor, and RSE1, a novel gene that we show to be important for pre-mRNA splicing. Both prp2-13 and rse1-1 mutants accumulate the ER forms of invertase and the vacuolar protease CPY at restrictive temperature. The secretion defect in each mutant can be suppressed by increasing the amount of SAR1, which encodes a small GTPase essential for COPII vesicle formation from the ER, or by deleting the intron from the SAR1 gene. These data indicate that a failure to splice SAR1 pre-mRNA is the specific cause of the secretion defects in prp2-13 and rse1-1. Moreover, these data imply that Sar1p is a limiting component of the ER-to-Golgi transport machinery and suggest a way that secretory pathway function might be coordinated with the amount of gene expression in a cell.


Assuntos
Genes Fúngicos/genética , Proteínas Monoméricas de Ligação ao GTP , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Sequência de Aminoácidos , Sequência Conservada/genética , RNA Helicases DEAD-box , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Genes Reporter , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Dados de Sequência Molecular , Mutação/genética , Alinhamento de Sequência , Temperatura , Proteínas de Transporte Vesicular , beta-Frutofuranosidase
18.
Mol Biol Cell ; 11(9): 2833-43, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10982384

RESUMO

In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys352, and Cys355 of Ero1p are important for oxidative protein folding and for cell viability, whereas Cys90, Cys208, and Cys349 are dispensable for these functions. Substitution of Cys100 with alanine impedes the capture of Ero1p-Pdi1p mixed-disulfide complexes from yeast, and also blocks oxidation of Pdi1p in vivo. Cys352 and Cys355 are required to maintain the fully oxidized redox state of Ero1p, and also play an auxiliary role in thiol-disulfide exchange with Pdi1p. These results suggest a model for the function of Ero1p wherein Cys100 and Cys105 form a redox-active disulfide bond that engages directly in thiol-disulfide exchange with ER oxidoreductases. The Cys352-Cys355 disulfide could then serve to reoxidize the Cys100-Cys105 cysteine pair, possibly through an intramolecular thiol-disulfide exchange reaction.


Assuntos
Cisteína , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Alanina , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência Conservada , Dissulfetos/metabolismo , Deleção de Genes , Teste de Complementação Genética , Genótipo , Glicoproteínas/química , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Fenótipo , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Mol Biol Cell ; 7(7): 1043-58, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8862519

RESUMO

Although convergent evidence suggests that proteins destined for export from the endoplasmic reticulum (ER) are separated from resident ER proteins and are concentrated into transport vesicles, the proteins that regulate this process have remained largely unknown. In a screen for suppressors of mutations in the essential COPII gene SEC13, we identified three genes (BST1, BST2/EMP24, and BST3) that negatively regulate COPII vesicle formation, preventing the production of vesicles with defective or missing subunits. Mutations in these genes slow the secretion of some secretory proteins and cause the resident ER proteins Kar2p and Pdi1p to leak more rapidly from the ER, indicating that these genes are also required for proper discrimination between resident ER proteins and Golgi-bound cargo molecules. The BST1 and BST2/EMP24 genes code for integral membrane proteins that reside predominantly in the ER. Our data suggest that the BST gene products represent a novel class of ER proteins that link the regulation of vesicle coat assembly to cargo sorting.


Assuntos
Retículo Endoplasmático/metabolismo , Genes Fúngicos , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Ativo/genética , Mapeamento Cromossômico , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Supressão Genética
20.
Mol Biol Cell ; 7(11): 1815-23, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8930902

RESUMO

Formation of COPII-coated vesicles at the endoplasmic reticulum (ER) requires assembly onto the membrane of five cytosolic coat proteins, Sec23p, Sec24p, Sec13p, Sec31p, and Sar1p. A sixth vesicle coat component, Sec16p, is tightly associated with the ER membrane and has been proposed to act as a scaffold for membrane association of the soluble coat proteins. We previously showed that Sec23p binds to the C-terminal region of Sec16p. Here we use two-hybrid and coprecipitation assays to demonstrate that the essential COPII protein Sec24p binds to the central region of Sec16p. In vitro reconstitution of binding with purified recombinant proteins demonstrates that the interaction of Sec24p with the central domain of Sec16p does not depend on the presence of Sec23p. However, Sec23p facilitates binding of Sec24p to Sec16p, and the three proteins can form a ternary complex in vitro. Truncations of Sec24p demonstrate that the N-terminal and C-terminal regions of Sec24p display different binding specificities. The C terminus binds to the central domain of Sec16p, whereas the N terminus of Sec24p binds to both the central domain of Sec16p and to Sec23p. These findings define binding to Sec16p as a new function for Sec24p and support the idea that Sec16p organizes assembly of the COPII coat.


Assuntos
Vesículas Revestidas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Leveduras/metabolismo , Sítios de Ligação , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Ativadoras de GTPase , Proteínas de Membrana/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA