Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Hypertens ; 40(3): 267-273, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29083936

RESUMO

Morning hypertension is an independent risk for cerebrovascular and cardiovascular events. Although the prevalence of morning hypertension increases with age, treatment of morning hypertension has not been established, particularly in Very-Elderly patients. We compared the safety and efficacy of a losartan/hydrochlorothiazide (HCTZ) combination in controlling morning hypertension between Very-Elderly (≥75 years) and Young/Elderly patients (<75 years). This study was a subanalysis of the Morning Hypertension and Angiotensin Receptor Blocker/Hydrochlorothiazide Combination Therapy study, in which patients with morning hypertension (≥135/85 mmHg) received a 50-mg losartan/12.5-mg HCTZ combination tablet (combination therapy) or 100-mg losartan (high-dose therapy) for 3 months. High adherence rates and few adverse effects were observed in Very-Elderly patients receiving combination (n = 32) and high-dose (n = 34) therapies and in Young/Elderly patients receiving combination (n = 69) and high-dose (n = 66) therapies. Baseline morning systolic BP (SBP) was similar in both age groups receiving either therapy. Morning SBP was reduced by 20.2 and 18.1 mmHg with combination therapy and by 7.1 and 9.1 mmHg with high-dose therapy in the Very-Elderly and Young/Elderly patients, respectively. Morning BP target (<135/85 mmHg) was achieved in 40.6% and 55.1% by combination therapy and in 14.7% and 24.2% by high-dose therapy in the Very-Elderly and Young/Elderly patients, respectively. Neither therapy changed renal function and serum potassium in Very-Elderly patients. In conclusion, the losartan/HCTZ combination was safe and effective in controlling morning hypertension in Very-Elderly as well as Young/Elderly patients. In addition, combination therapy was also superior to high-dose therapy for lowering morning SBP in Very-Elderly patients.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Diuréticos/uso terapêutico , Hidroclorotiazida/uso terapêutico , Hipertensão/tratamento farmacológico , Losartan/uso terapêutico , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/efeitos adversos , Diuréticos/efeitos adversos , Combinação de Medicamentos , Feminino , Humanos , Hidroclorotiazida/efeitos adversos , Rim/efeitos dos fármacos , Rim/fisiologia , Losartan/administração & dosagem , Losartan/efeitos adversos , Masculino , Pessoa de Meia-Idade , Potássio/sangue , Fatores de Tempo , Resultado do Tratamento
2.
Heart Vessels ; 32(7): 823-832, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28116487

RESUMO

Implantation of mammalian target of rapamycin (mTOR)-inhibitor drug-eluting stents (DESs) impairs coronary endothelial function. There are no known non-invasive biomarkers of coronary endothelial dysfunction. We aimed to assess the association between serum interleukin-1beta (IL-1ß) and coronary endothelial dysfunction in patients with mTOR-inhibitor DES implantation and to investigate the association between the mTOR pathway and IL-1ß. We enrolled 35 patients who had implanted DESs for coronary artery disease. At a 10-month follow-up, peripheral venous blood samples were collected to measure IL-1ß levels. Coronary endothelial dysfunction was evaluated by intracoronary infusion of incremental doses of acetylcholine. Serum IL-1ß levels were significantly associated with the magnitude of vasoconstriction to acetylcholine at the segment distal (P < 0.05) but not proximal to the stent. Serum IL-1ß levels were positively correlated with stent length (P < 0.05). To examine the direct effects of mTOR inhibition on IL-1ß release, sirolimus was incubated in cultured human umbilical vein endothelial cells (HUVECs) or coronary artery smooth muscle cells (CASMCs). Sirolimus directly increased IL-1ß mRNA expression (P < 0.01) and enhanced IL-1ß release into the culture media (P < 0.01) in CASMCs, but not in HUVECs. Inhibition of mTOR triggers IL-1ß release through transcriptional activation in CASMCs. Serum IL-1ß levels are a potential biomarker for mTOR-inhibitor DES-associated coronary endothelial dysfunction.


Assuntos
Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Stents Farmacológicos/efeitos adversos , Endotélio Vascular/patologia , Interleucina-1beta/sangue , Idoso , Biomarcadores/sangue , Doença da Artéria Coronariana/terapia , Endotélio Vascular/efeitos dos fármacos , Feminino , Humanos , Japão , Modelos Lineares , Masculino , Intervenção Coronária Percutânea , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Vasoconstrição/efeitos dos fármacos
3.
Kidney Int ; 87(1): 128-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24963916

RESUMO

The molecular mechanisms of endothelial dysfunction and vascular calcification have been considered independently and potential links are currently unknown in chronic kidney disease (CKD). Bone morphogenetic protein (BMP) receptor signaling mediates calcification of atherosclerotic plaques. Here we tested whether BMP receptor signaling contributes to endothelial dysfunction, as well as to osteogenic differentiation of vascular smooth muscle cells (VSMCs), in a model of short-term CKD. In C57BL/6 mice, subtotal nephrectomy activated BMP receptor and increased phosphatase-and-tensin homolog (PTEN) protein in the endothelial cells and medial VSMCs without vascular remodeling in the aorta. In the endothelial cells, PTEN induction led to inhibition of the Akt-endothelial nitric oxide synthase (eNOS) pathway and endothelial dysfunction. In VSMCs, the PTEN increase induced early osteogenic differentiation. CKD-induced inhibition of eNOS phosphorylation and the resultant endothelial dysfunction were inhibited in mice with endothelial cell-specific PTEN ablation. Knockout of the BMP type I receptor abolished endothelial dysfunction, the inhibition of eNOS phosphorylation, and VSMC osteogenic differentiation in mice with CKD. A small molecule inhibitor of BMP type I receptor, LDN-193189, prevented endothelial dysfunction and osteogenic differentiation in CKD mice. Thus, BMP receptor activation is a mechanism for endothelial dysfunction in addition to vascular osteogenic differentiation in a short-term CKD model. PTEN may be key in linking BMP receptor activation and endothelial dysfunction in CKD.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/fisiologia , Células Endoteliais/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/fisiologia , Osteogênese
4.
Circ J ; 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25354460

RESUMO

Background:Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury.Methods and Results:Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon (13C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by13C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR.Conclusions:T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

5.
Circ J ; 78(12): 2867-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25421230

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. CONCLUSIONS: T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Oxigenação por Membrana Extracorpórea , Ácidos Graxos/metabolismo , Lactatos/metabolismo , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Tri-Iodotironina/farmacologia , Desmame do Respirador/métodos , Trifosfato de Adenosina/biossíntese , Animais , Avaliação de Medicamentos , Hemodinâmica/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Consumo de Oxigênio , Ácido Pirúvico/metabolismo , Distribuição Aleatória , Sus scrofa , Suínos , Tri-Iodotironina/uso terapêutico
6.
Circ J ; 78(9): 2284-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24976508

RESUMO

BACKGROUND: It has been shown that increased short-term blood pressure (BP) variability (BPV) aggravates hypertensive cardiac remodeling in spontaneously hypertensive rats (SHRs) through a cardiac angiotensin II (angII) system. However, little was known about the renal damage induced by large BPV. Thus, histological changes in the kidney were investigated and candesartan, an angII type 1 receptor blocker (ARB), was also examined to see whether it would prevent renal damage in SHRs with large BPV. METHODS AND RESULTS: Bilateral sinoaortic denervation (SAD) was performed in SHRs to create a model of a combination of hypertension and large BPV. SAD increased BPV without changing mean BP. Seven weeks later, SAD induced patchy, wedge-shaped, focal sclerotic lesions accompanied by interstitial fibrosis and ischemic changes of glomeruli and tubules in the cortex. The pre-glomerular arterioles adjacent to the sclerotic lesions showed arteriolosclerotic changes associated with vascular smooth muscle cell proliferation and extracellular matrix deposition, leading to the luminal narrowing and occlusion. Chronic treatment with a subdepressor dose of candesartan prevented not only arteriolosclerotic changes but also cortical sclerotic lesions in SHRs with SAD without changing BPV. CONCLUSIONS: Large BPV aggravates pre-glomerular arteriolosclerosis, which results in the cortical sclerotic changes in SHRs through a local angII-mediated mechanism. This study raised the possibility that ARB is useful for renal protection in patients who have a combination of hypertension and increased BPV.


Assuntos
Arteriosclerose , Pressão Sanguínea , Hipertensão , Isquemia , Córtex Renal , Animais , Arteriosclerose/patologia , Arteriosclerose/fisiopatologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Isquemia/patologia , Isquemia/fisiopatologia , Córtex Renal/irrigação sanguínea , Córtex Renal/patologia , Córtex Renal/fisiopatologia , Coelhos , Ratos Endogâmicos SHR
7.
medRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352371

RESUMO

Background: Kawasaki disease (KD) is a multisystem inflammatory illness of infants and young children that can result in acute vasculitis. The pathological walls of afflicted coronary arteries show propensity for forming thrombosis and aneurysms. The mechanism of coronary artery aneurysms (CAA) despite intravenous gamma globulin (IVIG) treatment is not known. Methods: We performed a Whole Genome Sequencing (WGS) association analysis in a racially diverse cohort of KD patients treated with IVIG, both using AHA guidelines. We defined coronary aneurysm (CAA) (N = 234) as coronary z>2.5 and large coronary aneurysm (CAA/L) (N = 92) as z>5.0. We conducted logistic regression models to examine the association of genetic variants with CAA/L during acute KD and with persistence >6 weeks using an additive model between cases and 238 controls with no CAA. We adjusted for age, gender and three principal components of genetic ancestry. We performed functional mapping and annotation (FUMA) analysis and further assessed the predictive risk score of genomic risk loci using the area under the receiver operating characteristic curve (AUC). Results: The top significant variants associated with CAA/L were in the intergenic regions (rs62154092 p<6.32E-08 most significant). Variants in SMAT4, LOC100127 , PTPRD, TCAF2 and KLRC2 were the most significant non-intergenic SNPs. FUMA identified 12 genomic risk loci with eQTL or chromatin interactions mapped to 48 genes. Of these NDUFA5 has been implicated in KD CAA and MICU and ZMAT4 has potential functional implications. Genetic risk score using these 12 genomic risk loci yielded an AUC of 0.86. Conclusions: This pharmacogenomics study provides insights into the pathogenesis of CAA/L in IVIG-treated KD patients. We have identified multiple novel SNPs associated with CAA/L and related genes with potential functional implications. The study shows that genomics can help define the cause of CAA/L to guide management and improve risk stratification of KD patients.

8.
NPJ Genom Med ; 9(1): 34, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816462

RESUMO

Kawasaki disease (KD) is a multisystem inflammatory illness of infants and young children that can result in acute vasculitis. The mechanism of coronary artery aneurysms (CAA) in KD despite intravenous gamma globulin (IVIG) treatment is not known. We performed a Whole Genome Sequencing (WGS) association analysis in a racially diverse cohort of KD patients treated with IVIG, both using AHA guidelines. We defined coronary aneurysm (CAA) (N = 234) as coronary z ≥ 2.5 and large coronary aneurysm (CAA/L) (N = 92) as z ≥ 5.0. We conducted logistic regression models to examine the association of genetic variants with CAA/L during acute KD and with persistence >6 weeks using an additive model between cases and 238 controls with no CAA. We adjusted for age, gender and three principal components of genetic ancestry. The top significant variants associated with CAA/L were in the intergenic regions (rs62154092 p < 6.32E-08 most significant). Variants in SMAT4, LOC100127, PTPRD, TCAF2 and KLRC2 were the most significant non-intergenic SNPs. Functional mapping and annotation (FUMA) analysis identified 12 genomic risk loci with eQTL or chromatin interactions mapped to 48 genes. Of these NDUFA5 has been implicated in KD CAA and MICU and ZMAT4 has potential functional implications. Genetic risk score using these 12 genomic risk loci yielded an area under the receiver operating characteristic curve (AUC) of 0.86. This pharmacogenomics study provides insights into the pathogenesis of CAA/L in IVIG-treated KD and shows that genomics can help define the cause of CAA/L to guide management and improve risk stratification of KD patients.

9.
Circ J ; 77(6): 1474-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23470864

RESUMO

BACKGROUND: Hypertensive patients with large blood pressure variability (BPV) have aggravated target organ damage. Because the aldosterone/mineralocorticoid receptor (MR) system is a possible mechanism of hypertensive organ damage, we investigated in spontaneously hypertensive rats (SHRs) whether a specific MR blocker, eplerenone, would prevent BPV-induced aggravation of hypertensive cardiac remodeling. METHODS AND RESULTS: A rat model of a combination of hypertension and large BPV was created by performing bilateral sinoaortic denervation (SAD) in SHRs. SAD increased BPV without changing mean BP. SAD induced perivascular macrophage infiltration and aggravated myocardial fibrosis and cardiac hypertrophy, resulting in LV systolic dysfunction. Immunohistostaining revealed SAD-induced translocation of MRs into the nuclei (ie, MR activation) of the intramyocardial arterial medial cells and cardiac myocytes. SAD increased phosphorylation of p21-activated kinase1 (PAK1), a regulator of MR nuclear translocation. Chronic administration of a subdepressor dose of eplerenone prevented MR translocation, macrophage infiltration, myocardial fibrosis, cardiac hypertrophy, and LV dysfunction, while not affecting BPV. Circulating levels of aldosterone and cortisol were not changed by SAD. CONCLUSIONS: Eplerenone inhibited the aggravation of cardiac inflammation and hypertensive cardiac remodeling, and thereby prevented progression of LV dysfunction in SHRs with large BPV. This suggests that the PAK1-MR pathway plays a role in cardiac inflammation and remodeling induced by large BPV superimposed on hypertension, independent of circulating aldosterone.


Assuntos
Pressão Sanguínea , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Hipertensão/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Aldosterona/sangue , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Núcleo Celular/patologia , Eplerenona , Humanos , Hidrocortisona/sangue , Hipertensão/patologia , Hipertensão/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Proteínas Musculares/antagonistas & inibidores , Miocardite/metabolismo , Miocardite/patologia , Miocardite/fisiopatologia , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Espironolactona/análogos & derivados , Espironolactona/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Quinases Ativadas por p21/metabolismo
10.
Front Immunol ; 14: 1287094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259468

RESUMO

Introduction: Kawasaki disease (KD) is a diffuse vasculitis in children. Response to high dose intravenous gamma globulin (IVIG), the primary treatment, varies according to genetic background. We sought to identify genetic loci, which associate with treatment response using whole genome sequencing (WGS). Method: We performed WGS in 472 KD patients with 305 IVIG responders and 167 non-responders defined by AHA clinical criteria. We conducted logistic regression models to test additive genetic effect in the entire cohort and in four subgroups defined by ancestry information markers (Whites, African Americans, Asians, and Hispanics). We performed functional mapping and annotation using FUMA to examine genetic variants that are potentially involved IVIG non-response. Further, we conducted SNP-set [Sequence] Kernel Association Test (SKAT) for all rare and common variants. Results: Of the 43,288,336 SNPs (23,660,970 in intergenic regions, 16,764,594 in introns and 556,814 in the exons) identified, the top ten hits associated with IVIG non-response were in FANK1, MAP2K3:KCNJ12, CA10, FRG1DP, CWH43 regions. When analyzed separately in ancestry-based racial subgroups, SNPs in several novel genes were associated. A total of 23 possible causal genes were pinpointed by positional and chromatin mapping. SKAT analysis demonstrated association in the entire MANIA2, EDN1, SFMBT2, and PPP2R5E genes and segments of CSMD2, LINC01317, HIVEPI, HSP90AB1, and TTLL11 genes. Conclusions: This WGS study identified multiple predominantly novel understudied genes associated with IVIG response. These data can serve to inform regarding pathogenesis of KD, as well as lay ground work for developing treatment response predictors.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Criança , Humanos , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/genética , Imunoglobulinas Intravenosas/uso terapêutico , Farmacogenética , Íntrons , Éxons , Proteína Fosfatase 2
11.
Kidney Int ; 81(8): 762-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22297680

RESUMO

Patients with chronic kidney disease have elevated circulating asymmetric dimethylarginine (ADMA). Recent studies have suggested that ADMA impairs endothelial nitric oxide synthase (eNOS) by effects other than competition with the substrate L-arginine. Here, we sought to identify the molecular mechanism by which increased ADMA causes endothelial dysfunction in a chronic kidney disease model. In wild-type mice with remnant kidney disease, blood urea nitrogen, serum creatinine, and ADMA were increased by 2.5-, 2-, and 1.2-fold, respectively, without any change in blood pressure. Nephrectomy reduced endothelium-dependent relaxation and eNOS phosphorylation at Ser1177 in isolated aortic rings. In transgenic mice overexpressing dimethylarginine dimethylaminohydrolase-1, the enzyme that metabolizes ADMA, circulating ADMA was not increased by nephrectomy and was decreased to half that of wild-type mice. These mice did not exhibit the nephrectomy-induced inhibition of both endothelium-dependent relaxation and eNOS phosphorylation. In cultured human endothelial cells, agonist-induced eNOS phosphorylation and nitric oxide production were decreased by ADMA at concentrations less than that of L-arginine in the media. Thus, elevated circulating ADMA may be a cause, not an epiphenomenon, of endothelial dysfunction in chronic kidney disease. This effect may be attributable to inhibition of eNOS phosphorylation.


Assuntos
Arginina/análogos & derivados , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Insuficiência Renal Crônica/fisiopatologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Arginina/sangue , Arginina/farmacologia , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/fisiologia , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
12.
Am J Respir Crit Care Med ; 183(8): 1080-91, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21148721

RESUMO

RATIONALE: The etiology of hepatopulmonary syndrome (HPS), a common complication of cirrhosis, is unknown. Inflammation and macrophage accumulation occur in HPS; however, their importance is unclear. Common bile duct ligation (CBDL) creates an accepted model of HPS, allowing us to investigate the cause of HPS. OBJECTIVES: We hypothesized that macrophages are central to HPS and investigated the therapeutic potential of macrophage depletion. METHODS: Hemodynamics, alveolar-arterial gradient, vascular reactivity, and histology were assessed in CBDL versus sham rats (n = 21 per group). The effects of plasma on smooth muscle cell proliferation and endothelial tube formation were measured. Macrophage depletion was used to prevent (gadolinium) or regress (clodronate) HPS. CD68(+) macrophages and capillary density were measured in the lungs of patients with cirrhosis versus control patients (n = 10 per group). MEASUREMENTS AND MAIN RESULTS: CBDL increased cardiac output and alveolar-arterial gradient by causing capillary dilatation and arteriovenous malformations. Activated CD68(+)macrophages (nuclear factor-κB+) accumulated in HPS pulmonary arteries, drawn by elevated levels of plasma endotoxin and lung monocyte chemoattractant protein-1. These macrophages expressed inducible nitric oxide synthase, vascular endothelial growth factor, and platelet-derived growth factor. HPS plasma increased endothelial tube formation and pulmonary artery smooth muscle cell proliferation. Macrophage depletion prevented and reversed the histological and hemodynamic features of HPS. CBDL lungs demonstrated increased medial thickness and obstruction of small pulmonary arteries. Nitric oxide synthase inhibition unmasked exaggerated pulmonary vasoconstrictor responses in HPS. Patients with cirrhosis had increased pulmonary intravascular macrophage accumulation and capillary density. CONCLUSIONS: HPS results from intravascular accumulation of CD68(+)macrophages. An occult proliferative vasculopathy may explain the occasional transition to portopulmonary hypertension. Macrophage depletion may have therapeutic potential in HPS.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Síndrome Hepatopulmonar/imunologia , Macrófagos/imunologia , Animais , Antígenos CD/fisiologia , Antígenos de Diferenciação Mielomonocítica/fisiologia , Malformações Arteriovenosas/etiologia , Malformações Arteriovenosas/fisiopatologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Síndrome Hepatopulmonar/etiologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Pulmão/imunologia , Macrófagos/fisiologia , Masculino , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/fisiologia , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
13.
Physiol Rep ; 10(22): e15421, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36394073

RESUMO

Acute right ventricular pressure overload (RVPO) occurs following congenital heart surgery and often results in low cardiac output syndrome. We tested the hypothesis that the RV exhibits limited ability to modify substrate utilization in response to increasing energy requirements during acute RVPO after cardiopulmonary bypass (CPB). We assessed the RV fractional contributions (Fc) of substrates to the citric acid cycle in juvenile pigs exposed to acute RVPO by pulmonary artery banding (PAB) and CPB. Sixteen Yorkshire male pigs (median 38 days old, 12.2 kg of body weight) were randomized to SHAM (Ctrl, n = 5), 2-h CPB (CPB, n = 5) or CPB with PAB (PAB-CPB, n = 6). Carbon-13 (13 C)-labeled lactate, medium-chain, and mixed long-chain fatty acids (MCFA and LCFAs) were infused as metabolic tracers for energy substrates. After weaning from CPB, RV systolic pressure (RVSP) doubled baseline in PAB-CPB while piglets in CPB group maintained normal RVSP. Fc-LCFAs decreased significantly in order PAB-CPB > CPB > Ctrl groups by 13 C-NMR. Fc-lactate and Fc-MCFA were similar among the three groups. Intragroup analysis for PAB-CPB showed that the limited Fc-LCFAs appeared prominently in piglets exposed to high RVSP-to-left ventricular systolic pressure ratio and high RV rate-pressure product, an indicator of myocardial oxygen demand. Acute RVPO after CPB strongly inhibits LCFA oxidation without compensation by lactate oxidation, resulting in energy deficiency as determined by lower (phosphocreatine)/(adenosine triphosphate) in PAB-CPB. Adequate energy supply but also metabolic interventions may be required to circumvent these RV energy metabolic abnormalities during RVPO after CPB.


Assuntos
Disfunção Ventricular Direita , Animais , Masculino , Ponte Cardiopulmonar/efeitos adversos , Metabolismo Energético , Lactatos , Suínos , Pressão Ventricular/fisiologia , Desmame
14.
Circ J ; 73(9): 1705-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19638712

RESUMO

BACKGROUND: Thromboembolic events account for significant morbidity and mortality after the Fontan procedure, but the underlying mechanisms remain unclear. P-selectin on platelets indicates platelet activation. Thrombomodulin (TM), a receptor for thrombin and a major anticoagulant proteoglycan on the endothelial membrane, reflects the anticoagulant activity of the endothelium. The present study investigated the hypothesis that the balance between platelet activation and endothelial biological function is impaired in Fontan patients. METHODS AND RESULTS: Platelet P-selectin as a marker of platelet activation, plasma TM levels and protein C activity, as markers of anticoagulant activity of the endothelium, and thrombin-antithrombin complex III (TAT) were examined in 43 Fontan patients. P-selectin levels on platelets (4.5 +/-1.4 vs 3.4 +/-0.4 mean fluorescence intensity, P<0.001) and TAT levels (80.2 +/-322.6 vs 1.9 +/-0.9 ng/ml, P<0.05) were significantly higher in Fontan patients than in control subjects. On the other hand, plasma TM levels (1.5 +/-0.8 vs 2.2 +/-0.3 FU/ml, P<0.01) and protein C activity (71 +/-35 vs 118 +/-25%, P<0.001) were significantly lower in Fontan patients compared with controls. These abnormalities were not seen in patients after other surgical procedures for congenital heart disease. CONCLUSIONS: Platelet activation is enhanced and endothelial function is impaired in patients after the Fontan procedure, which may partly explain the thromboembolic complications in Fontan patients.


Assuntos
Plaquetas/metabolismo , Endotélio Vascular/metabolismo , Técnica de Fontan/efeitos adversos , Selectina-P/sangue , Ativação Plaquetária , Tromboembolia/sangue , Trombomodulina/sangue , Adolescente , Adulto , Antitrombina III , Biomarcadores/sangue , Coagulação Sanguínea , Estudos de Casos e Controles , Criança , Pré-Escolar , Regulação para Baixo , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Masculino , Peptídeo Hidrolases/sangue , Proteína C/metabolismo , Fatores de Risco , Tromboembolia/etiologia , Tromboembolia/fisiopatologia , Regulação para Cima , Adulto Jovem
15.
Circ J ; 73(12): 2198-203, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19875896

RESUMO

An increase in short-term blood pressure (BP) variability is a characteristic feature of hypertensive patients, especially in elderly patients. There is increasing evidence that large BP variability aggravates hypertensive target organ damage and is an independent risk factor for the cardiovascular events in elderly hypertensive patients. However, little is known about the underlying mechanism. We have created a rat model of a combination of hypertension and large BP variability by performing sinoaortic denervation (SAD) in spontaneously hypertensive rats (SHRs). SAD aggravates left ventricular (LV)/myocyte hypertrophy and myocardial fibrosis to a greater extent and impairs LV systolic function without changing mean BP in SHR. SAD upregulates cardiac monocyte chemoattractant protein-1 and transforming growth factor-beta, and induces macrophage infiltration. Cardiac angiotensinogen expression is increased and the angiotensin II type 1 receptor is activated by SAD. A subdepressor dose of angiotensin receptor blocker abolishes SAD-induced inflammatory changes and cardiac remodeling and subsequently prevents systolic dysfunction in SHR+SAD. Accordingly, it is suggested that cardiac inflammation via activation of the cardiac angiotensin II system would play a role in the aggravation of cardiac remodeling and dysfunction in hypertensives with large BP variability.


Assuntos
Pressão Sanguínea , Hipertensão/fisiopatologia , Miocardite/fisiopatologia , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda , Remodelação Ventricular , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Fibrose , Humanos , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/patologia , Macrófagos/metabolismo , Miocardite/complicações , Miocardite/metabolismo , Miocardite/patologia , Miocárdio/patologia , Ratos , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/metabolismo , Simpatectomia , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
16.
Circulation ; 115(13): 1777-88, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17353442

RESUMO

BACKGROUND: Constriction of the ductus arteriosus (DA) is initiated at birth by inhibition of O2-sensitive K+ channels in DA smooth muscle cells. Subsequent membrane depolarization and calcium influx through L-type calcium channels initiates functional closure. We hypothesize that Rho-kinase activation is an additional mechanism that sustains DA constriction. METHODS AND RESULTS: The effect of increased PO2 on the activity and expression of Rho-kinase was assessed in DAs from neonates with hypoplastic left-heart syndrome (n=15) and rabbits (339 term and 99 preterm rabbits). Rho-kinase inhibitors (Y-27632 and fasudil) prevent and reverse O2 constriction. Heterogeneity exists in the sensitivity of constrictors (PO2=endothelin=phenylephrine>KCl) and of fetal vessels (DA=pulmonary artery>aorta) to Rho-kinase inhibition. Inhibition of L-type calcium channels (nifedipine) or removal of extracellular calcium inhibits approximately two thirds of O2 constriction. Residual DA constriction reflects calcium sensitization, which persists after removal of extracellular calcium and blocking of sarcoplasmic reticulum Ca2+-ATPase. In term DA, an increase in PO2 activates Rho-kinase and thereby increases RhoB and ROCK-1 expression. Activation of Rho-kinase in DA smooth muscle cells is initiated by a PO2-dependent, rotenone-sensitive increase in mitochondrion-derived reactive O2 species. O2 effects on Rho-kinase are mimicked by exogenous H2O2. In preterm DAs, immaturity of mitochondrial reactive oxygen species generation is associated with reduced and delayed O2 constriction and lack of PO2-dependent upregulation of Rho-kinase expression. CONCLUSIONS: O2 activates Rho-kinase and increases Rho-kinase expression in term DA smooth muscle cells by a redox-regulated, positive-feedback mechanism that promotes sustained vasoconstriction. Conversely, Rho-kinase inhibitors may be useful in maintaining DA patency, as a bridge to congenital heart surgery.


Assuntos
Canal Arterial/efeitos dos fármacos , Oxigênio/farmacologia , Proteínas Serina-Treonina Quinases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Proteína rhoA de Ligação ao GTP/efeitos dos fármacos , Proteína rhoB de Ligação ao GTP/biossíntese , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Canal Arterial/enzimologia , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Coração Fetal/fisiologia , Idade Gestacional , Humanos , Peróxido de Hidrogênio/metabolismo , Síndrome do Coração Esquerdo Hipoplásico/patologia , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Nifedipino/farmacologia , Técnicas de Cultura de Órgãos , Oxirredução , Oxigênio/sangue , Pressão Parcial , Fenilefrina/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Piridinas/farmacologia , Coelhos , Superóxidos/metabolismo , Vasoconstrição/fisiologia , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/genética
17.
Epigenetics Chromatin ; 11(1): 18, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665845

RESUMO

BACKGROUND: Heterochromatin, which is formed when tri-methyl lysine 9 of histone H3 (H3K9me3) is bound by heterochromatin 1 proteins (HP1s), plays an important role in differentiation and senescence by silencing cell cycle genes. Cardiac myocytes (CMs) accumulate heterochromatin during differentiation and demethylation of H3K9me3 inhibits cell cycle gene silencing and cell cycle exit in CMs; however, it is unclear if this process is mediated by HP1s. In this study, we created a conditional CM-specific HP1 gamma (HP1γ) knockout (KO) mouse model and tested whether HP1γ is required for cell cycle gene silencing and cardiac growth. RESULTS: HP1γ KO mice were generated by crossing HP1γ floxed mice (fl) with mice expressing Cre recombinase driven by the Nkx2.5 (cardiac progenitor gene) promoter (Cre). We confirmed that deletion of critical exons of HP1γ led to undetectable levels of HP1γ protein in HP1γ KO (Cre;fl/fl) CMs. Analysis of cardiac size and function by echo revealed no significant differences between HP1γ KO and control (WT, Cre, fl/fl) mice. No significant difference in expression of cell cycle genes or cardiac-specific genes was observed. Global transcriptome analysis demonstrated a very moderate effect of HP1γ deletion on global gene expression, with only 51 genes differentially expressed in HP1γ KO CMs. We found that HP1ß protein, but not HP1α, was significantly upregulated and that subnuclear localization of HP1ß to perinuclear heterochromatin was increased in HP1γ KO CMs. Although HP1γ KO had no effect on H3K9me3 levels, we found a significant reduction in another major heterochromatin mark, tri-methylated lysine 20 of histone H4 (H4K20me3). CONCLUSIONS: These data indicate that HP1γ is dispensable for cell cycle exit and normal cardiac growth but has a significant role in maintaining H4K20me3 and regulating a limited number of genes in CMs.


Assuntos
Proteínas Cromossômicas não Histona/genética , Técnicas de Inativação de Genes , Histonas/metabolismo , Miócitos Cardíacos/citologia , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Metilação , Camundongos , Miócitos Cardíacos/metabolismo
18.
PLoS One ; 9(3): e92626, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663349

RESUMO

The effects of therapeutic angiogenesis by intramuscular injection of early pro-angiogenic cells (EPCs) to ischemic limbs are unsatisfactory. Oxidative stress in the ischemic limbs may accelerate apoptosis of injected EPCs, leading to less neovascularization. Forkhead transcription factor 4 (FOXO4) was reported to play a pivotal role in apoptosis signaling of EPCs in response to oxidative stress. Accordingly, we assessed whether FOXO4-knockdown EPCs (FOXO4KD-EPCs) could suppress the oxidative stress-induced apoptosis and augment the neovascularization capacity in ischemic limbs. We transfected small interfering RNA targeted against FOXO4 of human EPCs to generate FOXO4KD-EPCs and confirmed a successful knockdown. FOXO4KD-EPCs gained resistance to apoptosis in response to hydrogen peroxide in vitro. Oxidative stress stained by dihydroethidium was stronger for the immunodeficient rat ischemic limb tissue than for the rat non-ischemic one. Although the number of apoptotic EPCs injected into the rat ischemic limb was greater than that of apoptotic EPCs injected into the rat non-ischemic limb, FOXO4KD-EPCs injected into the rat ischemic limb brought less apoptosis and more neovascularization than EPCs. Taken together, the use of FOXO4KD-EPCs with resistance to oxidative stress-induced apoptosis may be a new strategy to augment the effects of therapeutic angiogenesis by intramuscular injection of EPCs.


Assuntos
Apoptose , Fatores de Transcrição Forkhead/deficiência , Técnicas de Silenciamento de Genes , Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Estresse Oxidativo , Fatores de Transcrição/deficiência , Adulto , Idoso , Animais , Proteínas de Ciclo Celular , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/genética , Humanos , Isquemia/genética , Isquemia/patologia , Masculino , Neovascularização Fisiológica , Fenótipo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética
19.
Int J Vasc Med ; 2012: 863410, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778964

RESUMO

Background. The heart consists of various kinds of cell components. However, it has not been feasible to separately analyze the gene expression of individual components. The laser microdissection (LMD) method, a new technology to collect target cells from the microscopic regions, has been used for malignancies. We sought to establish a method to selectively collect the muscular and vascular regions from the heart sections and to compare the marker gene expressions with this method. Methods and Results. Frozen left ventricle sections were obtained from Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHR-SP) at 24 weeks of age. Using the LMD method, the muscular and vascular regions were selectively collected under microscopic guidance. Real-time RT-PCR analysis showed that brain-type natriuretic peptide (BNP), a marker of cardiac myocytes, was expressed in the muscular samples, but not in the vascular samples, whereas α-smooth muscle actin, a marker of smooth muscle cells, was detected only in the vascular samples. Moreover, SHR-SP had significantly greater BNP upregulation than WKY (P < 0.05) in the muscular samples. Conclusions. The LMD method enabled us to separately collect the muscular and vascular samples from myocardial sections and to selectively evaluate mRNA expressions of the individual tissue component.

20.
Cardiovasc Res ; 95(4): 448-59, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22641844

RESUMO

AIMS: Unsatisfactory effects of therapeutic angiogenesis in critical limb ischaemia may be ascribed to use of circulating angiogenic cells (CACs) derived from atherosclerotic patients with impaired neovascularization-related capacities. We tested whether ultrasound cell stimulation can restore the impaired capacities. METHODS AND RESULTS: During culture of human peripheral blood-derived mononuclear cells for 4 days to achieve CACs, we stimulated the cells in culture daily with low-intensity pulsed ultrasound stimulation (LIPUS). Application of LIPUS to cells in culture derived from healthy volunteers augmented the generation and migration capacities of CACs, increased concentrations of angiopoietin 2 and nitrogen oxides in the culture medium, and increased the expression of phosphorylated-Akt and endothelial nitric oxide synthase in CACs on western blotting. Application of LIPUS to cells in culture derived from atherosclerotic patients also augmented the generation and migration capacities of CACs. Although neovascularization in the ischaemic hindlimb of athymic nude mice was impaired after intramuscular injection of CACs derived from atherosclerotic patients compared with that using CACs derived from healthy volunteers, LIPUS of the cells in culture derived from atherosclerotic patients restored the neovascularization capacities. CONCLUSION: Therapeutic angiogenesis with LIPUS-pre-treated CACs may be a new strategy to rescue critical limb ischaemia in atherosclerotic patients.


Assuntos
Aterosclerose/patologia , Leucócitos Mononucleares/patologia , Neovascularização Fisiológica , Ultrassom , Angiopoietina-2/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Western Blotting , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Membro Posterior , Humanos , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Isquemia/terapia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA