Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 63(8): 1130-1139, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35779003

RESUMO

Animal Rho GTP-binding proteins and their plant counterparts, Rho of plants (ROPs), regulate cell polarity, but they do so through different effector proteins. A class of ROP effectors, interactor of constitutive active ROPs (ICRs)/ROP interactive partners (RIPs), has been implicated in diverse biological processes; however, there are limited analyses of RIP loss-of-function mutants. Here, we report an analysis of the functions of the Arabidopsis thaliana RIPs in the leaf epidermis. Green Fluorescent Protein (GFP) fusion proteins of all the RIPs colocalized to cortical microtubules. RIP1, RIP3 and RIP4, but not RIP2 and RIP5, colocalized with the preprophase band (PPB), spindles and phragmoplasts. RIP2 and RIP5 did not colocalize with the PPB, spindles or phragmoplasts even when they were expressed under a promoter active in proliferative cells, indicating that there are differences among RIP protein properties. The overexpression of RIP1 or RIP4 resulted in the fragmentation of cortical microtubules, and the rip1 2 3 4 5 quintuple mutant showed increased growth rate of microtubules at their plus ends compared with the wild type. The rip1 2 3 4 5 mutant leaves and petals were narrow, which was explained by the decreased cell number along the transverse axis compared with that of the wild type. The rip1 2 3 4 5 mutant leaf epidermis possessed fewer PPBs oriented close to the long axis of the leaf compared with wild type, indicating the involvement of RIPs in cell division plane regulation and leaf shape determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Microtúbulos/metabolismo , Folhas de Planta/metabolismo
2.
Development ; 145(14)2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29967282

RESUMO

Mutual interactions of the phytohormones, cytokinins and auxin determine root or shoot identity during postembryonic de novo organogenesis in plants. However, our understanding of the role of hormonal metabolism and perception during early stages of cell fate reprogramming is still elusive. Here we show that auxin activates root formation, whereas cytokinins mediate early loss of the root identity, primordia disorganisation and initiation of shoot development. Exogenous and endogenous cytokinins influence the initiation of newly formed organs, as well as the pace of organ development. The process of de novo shoot apical meristem establishment is accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of the shoot-specific homeodomain regulator WUSCHEL. The last is associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with trans-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulates the root stem cell organiser WUSCHEL RELATED HOMEOBOX 5 in the root quiescent centre. We propose an important role for endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of de novo-induced organ identity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Citocininas/metabolismo , Meristema/embriologia , Organogênese Vegetal/fisiologia , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Proteínas Quinases/genética , Receptores de Superfície Celular/genética
3.
Plant J ; 92(2): 211-228, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28746737

RESUMO

Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN.


Assuntos
Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Tylenchoidea , Animais , Arabidopsis/parasitologia , Arabidopsis/fisiologia , Citocininas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas , Interações Hospedeiro-Parasita , Metabolismo/fisiologia , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Raízes de Plantas/fisiologia , Transdução de Sinais/fisiologia , Tylenchoidea/fisiologia
4.
Plant Cell Physiol ; 59(4): 823-835, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401292

RESUMO

An asymmetric auxin distribution pattern is assumed to underlie the tropic responses of seed plants. It is unclear, however, whether this pattern is required for root negative phototropism. We here demonstrate that asymmetric auxin distribution is not required to establish root phototropism in Arabidopsis. Our detailed analyses of auxin reporter genes indicate that auxin accumulates on the irradiated side of roots in response to an incidental gravitropic stimulus caused by phototropic bending. Further, an agravitropic mutant showed a suppression of this accumulation with an enhancement of the phototropic response. In this context, our pharmacological and genetic analyses revealed that both polar auxin transport and auxin biosynthesis are critical for the establishment of root gravitropism, but not for root phototropism, and that defects in these processes actually enhance phototropic responses in roots. The auxin response factor double mutant arf7 arf19 and the auxin receptor mutant tir1 showed a slight reduction in phototropic curvatures in roots, suggesting that the transcriptional regulation by some specific ARF proteins and their regulators is at least partly involved in root phototropism. However, the auxin antagonist PEO-IAA [α-(phenylethyl-2-one)-indole-3-acetic acid] suppressed root gravitropism and enhanced root phototropism, suggesting that the TIR1/AFB auxin receptors and ARF transcriptional factors play minor roles in root phototropism. Taken together, we conclude from our current data that the phototropic response in Arabidopsis roots is induced by an unknown mechanism that does not require asymmetric auxin distribution and that the Cholodny-Went hypothesis probably does not apply to root phototropism.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Fototropismo , Raízes de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(41): 12669-74, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417108

RESUMO

Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.


Assuntos
Arabidopsis , Citocininas/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Transdução de Sinais , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Sequência de Bases , Citocininas/genética , Dados de Sequência Molecular
6.
Plant Cell Physiol ; 58(10): 1801-1811, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016942

RESUMO

Membrane traffic at the trans-Golgi network (TGN) is crucial for correctly distributing various membrane proteins to their destination. Polarly localized auxin efflux proteins, including PIN-FORMED1 (PIN1), are dynamically transported between the endosomes and the plasma membrane (PM) in the plant cells. The intracellular trafficking of PIN1 protein is sensitive to the fungal toxin brefeldin A (BFA), which is known to inhibit guanine nucleotide exchange factors for ADP ribosylation factors (ARF GEFs) such as GNOM. However, the molecular details of the BFA-sensitive trafficking pathway have not been fully revealed. In a previous study, we identified an Arabidopsis mutant BFA-visualized endocytic trafficking defective 3 (ben3) which exhibited reduced sensitivity to BFA in terms of BFA-induced intracellular PIN1 agglomeration. Here, we show that BEN3 encodes a member of BIG family ARF GEFs, BIG2. BEN3/BIG2 tagged with fluorescent proteins co-localized with markers for the TGN/early endosome (EE). Inspection of conditionally induced de novo synthesized PIN1 confirmed that its secretion to the PM is BFA sensitive, and established BEN3/BIG2 as a crucial component of this BFA action at the level of the TGN/EE. Furthermore, ben3 mutation alleviated BFA-induced agglomeration of another TGN-localized ARF GEF, BEN1/MIN7. Taken together, our results suggest that BEN3/BIG2 is an ARF GEF component, which confers BFA sensitivity to the TGN/EE in Arabidopsis.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brefeldina A/farmacologia , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Rede trans-Golgi/metabolismo , Fatores de Ribosilação do ADP/genética , Alelos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Compartimento Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clonagem Molecular , Códon sem Sentido/genética , Endossomos/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Fenótipo , Transporte Proteico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Rede trans-Golgi/efeitos dos fármacos
7.
Plant J ; 82(5): 874-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904120

RESUMO

Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by auxin, leading to the hypothesis that release from apical dominance relies on an increased supply of CK to buds. Our data confirm that decapitation induces the expression of at least one ISOPENTENYLTRANSFERASE (IPT) CK biosynthetic gene in the stem. We further show that transcript abundance of a clade of the CK-responsive type-A Arabidopsis response regulator (ARR) genes increases in buds following CK supply, and that, contrary to their typical action as inhibitors of CK signalling, these genes are required for CK-mediated bud activation. However, analysis of the relevant arr and ipt multiple mutants demonstrates that defects in bud CK response do not affect auxin-mediated bud inhibition, and increased IPT transcript levels are not needed for bud release following decapitation. Instead, our data suggest that CK acts to overcome auxin-mediated bud inhibition, allowing buds to escape apical dominance under favourable conditions, such as high nitrate availability.


Assuntos
Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/genética , Família Multigênica , Mutação , Nitratos/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Fatores de Transcrição/genética
8.
PLoS Genet ; 9(5): e1003540, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23737757

RESUMO

PIN-FORMED (PIN) proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.


Assuntos
Oxirredutases do Álcool/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Polaridade Celular/genética , Dineínas do Citoplasma/genética , Proteínas Munc18/genética , Oxirredutases do Álcool/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/genética , Membrana Celular/metabolismo , Endossomos/genética , Endossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Munc18/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transporte Proteico/genética , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
9.
Plant Cell Physiol ; 56(8): 1641-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26076971

RESUMO

The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenases/metabolismo , Fenilacetatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Oxigenases/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Zea mays/genética , Zea mays/crescimento & desenvolvimento
10.
Physiol Plant ; 153(1): 137-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24833217

RESUMO

Root hair formation is controlled by environmental signals. We found significantly increased Arabidopsis root hair density and length in response to low-dose vanadate (V). Reactive oxygen species (ROS) production was induced with V treatment. We investigated the possible role of NADPH oxidase in altering root system architecture induced by V by using diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, and an NADPH oxidase mutant (rhd2/AtrbohC). NADPH oxidase was involved in root hair elongation induced by V. As well, ethylene receptor (ETR1) and ROOT HAIR DEFECTIVE (RHD6) participated in inducing root hair formation induced by V. Furthermore, the kinase inhibitors, genistein (tyrosine kinase inhibitor) and K252a (ser/thr kinase inhibitor), and a phosphatase inhibitor, cantharidin (ser/thr phosphatase inhibitor), suppressed root hair formation induced by V. To elucidate the regulation of gene expression in response to V, we investigated transcriptional changes in roots by microarray assay. Exposure to V triggered changes in transcript levels of genes related to cell wall formation, ROS activity and signaling. Several genes involved in root hair formation were also regulated.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , NADPH Oxidases/genética , Transdução de Sinais/efeitos dos fármacos , Vanadatos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Cantaridina/farmacologia , Parede Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Genes Reporter , Genisteína/farmacologia , Mutação , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oniocompostos/farmacologia , Fenótipo , Fosforilação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Plântula
11.
Proc Natl Acad Sci U S A ; 109(16): 6337-42, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474391

RESUMO

Multicellular organisms achieve final body shape and size by coordinating cell proliferation, expansion, and differentiation. Loss of function in the Arabidopsis ERECTA (ER) receptor-kinase gene confers characteristic compact inflorescence architecture, but its underlying signaling pathways remain unknown. Here we report that the expression of ER in the phloem is sufficient to rescue compact er inflorescences. We further identified two Epidermal Patterning Factor-like (EPFL) secreted peptide genes, EPFL4 and EPFL6/CHALLAH (CHAL), as redundant, upstream components of ER-mediated inflorescence growth. The expression of EPFL4 or EPFL6 in the endodermis, a layer adjacent to phloem, is sufficient to rescue the er-like inflorescence of epfl4 epfl6 plants. EPFL4 and EPFL6 physically associate with ER in planta. Finally, transcriptome analysis of er and epfl4 epfl6 revealed a potential downstream component as well as a role for plant hormones in EPFL4/6- and ER-mediated inflorescence growth. Our results suggest that intercell layer communication between the endodermis and phloem mediated by peptide ligands and a receptor kinase coordinates proper inflorescence architecture in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Inflorescência/genética , Floema/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Immunoblotting , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Floema/crescimento & desenvolvimento , Floema/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos
12.
Plant Cell Physiol ; 55(8): 1450-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880779

RESUMO

Auxin plays a key role in regulation of almost all processes of plant growth and development. Different physiological processes are regulated by different ranges of auxin concentrations; however, the underlying mechanisms creating these differences are largely unknown. The first step of auxin signaling is auxin-dependent interaction of an auxin receptor with transcriptional co-repressors (Aux/IAA), which leads to Aux/IAA degradation. Arabidopsis has six homologous auxin receptors (TIR1 and five AFBs), 29 Aux/IAA proteins and two types of active auxins, IAA and phenylacetic acid (PAA). Therefore, a large number of possible combinations between these three factors may contribute to the creation of complex auxin responses. Using a yeast heterologous reconstitution system, we investigated auxin-dependent degradation of all Arabidopsis Aux/IAAs in combination with every TIR or AFB receptor component. We found that TIR1 and AFB2 were effective in mediating Aux/IAA degradation. We confirmed that the Aux/IAA domain II, which binds TIR1, is essential for degradation. IAA and other natural auxins, 4-chloroindole-3-acetic acid (4-Cl-IAA) and PAA, induced Aux/IAA degradation; and IAA and 4-Cl-IAA had higher activity than PAA. Effective auxin concentrations for Aux/IAA degradation depended on both Aux/IAAs and TIR1 or AFB2 receptors, which is consistent with the Aux/IAA-TIR1/AFB co-receptor concept.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Genes Reporter , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Geneticamente Modificadas , Proteólise/efeitos dos fármacos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido
13.
Plant Cell Physiol ; 55(12): 2037-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25381317

RESUMO

Plants, which are sessile unlike most animals, have evolved a system to reduce growth under stress; however, the molecular mechanisms of this stress response are not well known. During programmed development, a fraction of the leaf epidermal precursor cells become meristemoid mother cells (MMCs), which are stem cells that produce both stomatal guard cells and epidermal pavement cells. Here we report that Arabidopsis plants, in response to osmotic stress, post-transcriptionally decrease the protein level of SPEECHLESS, the transcription factor promoting MMC identity, through the action of a mitogen-activated protein kinase (MAPK) cascade. The growth reduction under osmotic stress was lessened by inhibition of the MAPK cascade or by a mutation that disrupted the MAPK target amino acids in SPEECHLESS, indicating that Arabidopsis reduces growth under stress by integrating the osmotic stress signal into the MAPK-SPEECHLESS core developmental pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Secas , Genes Reporter , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Biológicos , Pressão Osmótica , Epiderme Vegetal/enzimologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia
14.
Plant Cell Physiol ; 55(4): 737-49, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24369434

RESUMO

Correct positioning of membrane proteins is an essential process in eukaryotic organisms. The plant hormone auxin is distributed through intercellular transport and triggers various cellular responses. Auxin transporters of the PIN-FORMED (PIN) family localize asymmetrically at the plasma membrane (PM) and mediate the directional transport of auxin between cells. A fungal toxin, brefeldin A (BFA), inhibits a subset of guanine nucleotide exchange factors for ADP-ribosylation factor small GTPases (ARF GEFs) including GNOM, which plays a major role in localization of PIN1 predominantly to the basal side of the PM. The Arabidopsis genome encodes 19 ARF-related putative GTPases. However, ARF components involved in PIN1 localization have been genetically poorly defined. Using a fluorescence imaging-based forward genetic approach, we identified an Arabidopsis mutant, bfa-visualized exocytic trafficking defective1 (bex1), in which PM localization of PIN1-green fluorescent protein (GFP) as well as development is hypersensitive to BFA. We found that in bex1 a member of the ARF1 gene family, ARF1A1C, was mutated. ARF1A1C localizes to the trans-Golgi network/early endosome and Golgi apparatus, acts synergistically to BEN1/MIN7 ARF GEF and is important for PIN recycling to the PM. Consistent with the developmental importance of PIN proteins, functional interference with ARF1 resulted in an impaired auxin response gradient and various developmental defects including embryonic patterning defects and growth arrest. Our results show that ARF1A1C is essential for recycling of PIN auxin transporters and for various auxin-dependent developmental processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brefeldina A/farmacologia , Endocitose/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Fatores de Ribosilação do ADP/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Clonagem Molecular , Epistasia Genética/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Transporte Proteico/efeitos dos fármacos
15.
Plant Cell ; 23(6): 2169-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21719693

RESUMO

Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development.


Assuntos
Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/genética , Citocininas/metabolismo , Sais/metabolismo , Estresse Fisiológico , Ácido Abscísico/farmacologia , Adaptação Fisiológica , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Estômatos de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/fisiologia , Transdução de Sinais/fisiologia
16.
Plant Cell Physiol ; 54(8): 1253-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23686240

RESUMO

The positioning and density of leaf stomata are regulated by three secretory peptides, EPIDERMAL PATTERNING FACTOR 1 (EPF1), EPF2 and stomagen. Several lines of published evidence have suggested a regulatory pathway as follows. EPF1 and EPF2 are perceived by receptor complexes consisting of a receptor-like protein, TOO MANY MOUTHS (TMM), and receptor kinases, ERECTA (ER), ERECTA-LIKE (ERL) 1 and ERL2. These receptors activate a mitogen-activated protein (MAP) kinase module. MAP kinases phosphorylate and destabilize the transcription factor SPEECHLESS (SPCH), resulting in a decrease in the number of stomatal lineage cells. Stomagen acts antagonistically to EPF1 and EPF2. However, there is no direct evidence that EPF1 and EPF2 activate or that stomagen inactivates the MAP kinase cascade, through which they might regulate the SPCH level. Experimental modulation of these peptides in Arabidopsis thaliana would change the number of stomatal lineage cells in developing leaves, which in turn would change the expression of SPCH, making the interpretation difficult. Here we reconstructed this signaling pathway in differentiated leaf cells of Nicotiana benthamiana to examine signaling without the confounding effect of cell type change. We show that EPF1 and EPF2 are able to activate the MAP kinase MPK6, and that both EPF1 and EPF2 are able to decrease the SPCH level, whereas stomagen is able to increase it. Our data also suggest that EPF1 can be recognized by TMM together with any ER family receptor kinase, whereas EPF2 can be recognized by TMM together with ERL1 or ERL2, but not by TMM together with ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Genes Reporter , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Proteínas Recombinantes de Fusão , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Biosci Biotechnol Biochem ; 77(6): 1287-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23748792

RESUMO

Stomatal development in Arabidopsis epidermis is both positively and negatively regulated by a family of Cys-rich peptides, EPIDERMAL PATTERNING FACTOR LIKEs (EPFLs). We synthesized biologically active synthetic EPFL5 (sEPFL5) peptide, which reduced the number of stoma in leaves and cotyledons. The sEPFL5 possesses three disulfide bonds at positions identical to those of a positive development factor, stomagen. Application of sEPFL5 had little inhibitory effect on protodermal cells entering the stomatal lineage, but did inhibit the maintenance of meristemoid activity, resulting in the differentiation of arrested meristemoids into pavement cells. This phenotype was enhanced in the too many mouths (tmm) mutant background. RNA analysis revealed that sEPFL5 application halved SPEECHLESS expression and abolished MUTE expression in tmm mutants, explaining the phenotype observed. The action of sEPFL5 was mediated by ERECTA family receptors. We propose that EPFL5 functions to establish the differentiation of stomatal lineage cells to pavement cells.


Assuntos
Proteínas de Arabidopsis/administração & dosagem , Arabidopsis/crescimento & desenvolvimento , Peptídeos/administração & dosagem , Desenvolvimento Vegetal/genética , Arabidopsis/genética , Proteínas de Arabidopsis/síntese química , Proteínas de Arabidopsis/metabolismo , Linhagem da Célula , Cotilédone/efeitos dos fármacos , Cotilédone/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Mutação , Peptídeos/síntese química , Peptídeos/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
18.
Nat Methods ; 6(12): 917-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19915560

RESUMO

Plants have evolved a unique system in which the plant hormone auxin directly induces rapid degradation of the AUX/IAA family of transcription repressors by a specific form of the SCF E3 ubiquitin ligase. Other eukaryotes lack the auxin response but share the SCF degradation pathway, allowing us to transplant the auxin-inducible degron (AID) system into nonplant cells and use a small molecule to conditionally control protein stability. The AID system allowed rapid and reversible degradation of target proteins in response to auxin and enabled us to generate efficient conditional mutants of essential proteins in yeast as well as cell lines derived from chicken, mouse, hamster, monkey and human cells, thus offering a powerful tool to control protein expression and study protein function.


Assuntos
Ácidos Indolacéticos/metabolismo , Proteínas/metabolismo , Animais , Linhagem Celular , Galinhas , Proteínas de Fluorescência Verde/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(3): 929-34, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19129491

RESUMO

Decades ago, the importance of cytokinins (CKs) during Rhodococcus fascians pathology had been acknowledged, and an isopentenyltransferase gene had been characterized in the fas operon of the linear virulence plasmid, but hitherto, no specific CK(s) could be associated with virulence. We show that the CK receptors AHK3 and AHK4 of Arabidopsis thaliana are essential for symptom development, and that the CK perception machinery is induced upon infection, underlining its central role in the symptomatology. Three classical CKs [isopentenyladenine, trans-zeatin, and cis-zeatin (cZ)] and their 2-methylthio (2MeS)-derivatives were identified by CK profiling of both the pathogenic R. fascians strain D188 and its nonpathogenic derivative D188-5. However, the much higher CK levels in strain D188 suggest that the linear plasmid is responsible for the virulence-associated production. All R. fascians CKs were recognized by AHK3 and AHK4, and, although they individually provoked typical CK responses in several bioassays, the mixture of bacterial CKs exhibited clear synergistic effects. The cis- and 2MeS-derivatives were poor substrates of the apoplastic CK oxidase/dehydrogenase enzymes and the latter were not cytotoxic at high concentrations. Consequently, the accumulating 2MeScZ (and cZ) in infected Arabidopsis tissue contribute to the continuous stimulation of tissue proliferation. Based on these results, we postulate that the R. fascians pathology is based on the local and persistent secretion of an array of CKs.


Assuntos
Arabidopsis/microbiologia , Rhodococcus/patogenicidade , Proteínas de Arabidopsis/fisiologia , Citocininas/análise , Histidina Quinase , Homeostase , Proteínas Quinases/fisiologia , Receptores de Superfície Celular/fisiologia , Virulência
20.
Plant Biotechnol (Tokyo) ; 39(1): 29-36, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35800961

RESUMO

Pericycle cells possess proliferative activity long after leaving the root apical meristem. Depending on the developmental stage and external stimuli, pericycle cell division leads to the production of lateral roots, vascular cambium and periderm, and callus. Therefore, pericycle cell division competence underlies root branching and secondary growth, as well as plant regeneration capacity. In this review, we first briefly present an overview of the molecular pathways of the four developmental programs originated, exclusively or partly, from pericycle cells. Then, we provide a review of up-to-date knowledge in the mechanisms determining pericycle cells' competence to undergo cell division. Furthermore, we discuss directions of future research to further our understanding of the pericycle's characteristics and functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA