Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gynecol Oncol ; 164(1): 136-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756749

RESUMO

INTRODUCTION: TMEM205 is a novel transmembrane protein associated with platinum resistance (PR) in epithelial ovarian carcinoma (OC), however, the specific mechanisms associated with this resistance remain to be elucidated. METHODS: TMEM205 expression was evaluated in platinum-sensitive (PS) versus platinum resistant (PR) ovarian cancer cell lines and patient serum/tissues. Exosomal efflux of platinum was evaluated with inductively coupled plasma mass spectrometry (ICP-MS) after pre-treatment with small molecule inhibitors (L-2663/L-2797) of TMEM205 prior to treatment with platinum. Cytotoxicity of combination treatment was confirmed in vitro and in an in vivo model. RESULTS: TMEM205 expression was 10-20 fold higher in PR compared to PS ovarian cancer cell lines, serum samples, and tissues. Co-localization with CD1B was confirmed by in-situ proximity ligation assay suggesting that TMEM205 may mediate PR via the exosomal pathway. Exosomal secretion was significantly increased 5-10 fold in PR cell lines after treatment with carboplatin compared to PS cell lines. Pre-treatment with L-2663 prior to carboplatin resulted in significantly increased intracellular concentration of fluorescently-labeled cisplatin and decreased exosomal efflux of platinum. Decreased cell survival and tumor growth in vitro and in vivo was observed when PR cells were treated with a combination of L-2663 with carboplatin compared to carboplatin alone. CONCLUSION: TMEM205 appears to be involved in the development of PR in ovarian cancer through the exosomal efflux of platinum agents. This study provides pre-clinical evidence that TMEM205 could serve as a possible biomarker for PR as well as a therapeutic target in combination with platinum agents.


Assuntos
Antineoplásicos , Carboplatina , Proteínas de Membrana , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo
2.
J Extracell Biol ; 3(2): e92, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38939897

RESUMO

The interferon stimulated gene 15 (ISG15), a ubiquitin like protein and its conjugates have been implicated in various human malignancies. However, its role in ovarian cancer progression and metastasis is largely unknown. In high grade serous ovarian cancer (HGSOC), ascites is the major contributor to peritoneal metastasis. In this study, we identified significantly elevated ISG15 protein expression in HGSOC patient ascites, ascites derived primary ovarian cancer cells (POCCs), POCC small extracellular vesicles (sEVs) as well as metastatic tissue. Our results demonstrates that ISG15 increases exocytosis in ascites-derived POCCs by decreasing the endosome-lysosomal fusion, indicating a key role in sEV secretion. Further, knockdown (KD) of ISG15 resulted in a significant decrease in vesicles secretion from HGSOC cells and in vivo mouse models, leading to reduced HGSOC cell migration and invasion. Furthermore, our pre-clinical mouse model studies revealed the influence of vesicular ISG15 on disease progression and metastasis. In addition, knockdown of ISG15 or using the ISG15 inhibitor, DAP5, in combination therapy with carboplatin showed to improve the platinum sensitivity in-vitro and reduce tumour burden in-vivo. We also found that ISG15 expression within sEV represents a promising prognostic marker for HGSOC patients. Our findings suggest that ISG15 is a potential therapeutic target for inhibiting progression and metastasis in HGSOC and that vesicular ISG15 expression could be a promising biomarker in the clinical management of ovarian cancer. Significance: High-grade serous ovarian cancer (HGSOC) has high morbidity and mortality rates, but its progression and metastasis are still poorly understood, and there is an urgent need for early detection and targeted therapies. Our study presents novel findings that implicate ISG15-mediated vesicular proteins in the advancement and spread of HGSOC. These results offer pre-clinical evidence of potential new molecular targets, prognostic markers and therapeutic strategies for HGSOC that could ultimately enhance patient survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA