Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Res ; 249: 118451, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341073

RESUMO

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.


Assuntos
COVID-19 , Mucosa Olfatória , Material Particulado , SARS-CoV-2 , Material Particulado/toxicidade , Humanos , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/virologia , COVID-19/imunologia , Poluentes Atmosféricos/toxicidade , Idoso , Masculino , Feminino , Doença de Alzheimer/imunologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/virologia , Pessoa de Meia-Idade , Citocinas/metabolismo , Idoso de 80 Anos ou mais , Estresse Oxidativo/efeitos dos fármacos
2.
J Neuroinflammation ; 20(1): 299, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098019

RESUMO

BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Anosmia/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Mucosa Olfatória/metabolismo
3.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456941

RESUMO

Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.


Assuntos
Doença de Alzheimer , Oligoelementos , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Quelantes/metabolismo , Humanos , Mucosa Olfatória/metabolismo , Oligoelementos/metabolismo , Zinco/metabolismo
4.
Redox Biol ; 75: 103272, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39047637

RESUMO

Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 µm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.


Assuntos
Doença de Alzheimer , Mitocôndrias , Mucosa Olfatória , Material Particulado , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/induzido quimicamente , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Material Particulado/efeitos adversos , Material Particulado/toxicidade , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Mucosa Olfatória/efeitos dos fármacos , Emissões de Veículos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Masculino , Feminino , Idoso , Espécies Reativas de Oxigênio/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/efeitos adversos
5.
Sci Rep ; 13(1): 12641, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537264

RESUMO

Successful development of novel therapies requires that clinical trials are conducted in patient cohorts with the highest benefit-to-risk ratio. Population-based biobanks with comprehensive health and genetic data from large numbers of individuals hold promise to facilitate identification of trial participants, particularly when interventions need to start while symptoms are still mild, such as for Alzheimer's disease (AD). This study describes a process for clinical recall studies from FinnGen. We demonstrate the feasibility to systematically ascertain customized clinical data from FinnGen participants with ICD10 diagnosis of AD or mild cognitive disorder (MCD) in a single-center cross-sectional study testing blood-based biomarkers and cognitive functioning in-person, computer-based and remote. As a result, 19% (27/140) of a pre-specified FinnGen subcohort were successfully recalled and completed the study. Hospital records largely validated registry entries. For 8/12 MCD patients, other reasons than AD were identified as underlying diagnosis. Cognitive measures correlated across platforms, with highest consistencies for dementia screening (r = 0.818) and semantic fluency (r = 0.764), respectively, for in-person versus telephone-administered tests. Glial fibrillary acidic protein (GFAP) (p < 0.002) and phosphorylated-tau 181 (pTau-181) (p < 0.020) most reliably differentiated AD from MCD participants. We conclude that informative, customized clinical recall studies from FinnGen are feasible.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Proteínas tau , Rememoração Mental , Biomarcadores , Peptídeos beta-Amiloides
6.
Sci Total Environ ; 905: 167038, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709087

RESUMO

Ultrafine particles (UFP) with a diameter of ≤0.1 µm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 µm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.


Assuntos
Poluentes Atmosféricos , Xenobióticos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Mucosa Olfatória/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA