Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Respir Cell Mol Biol ; 64(1): 69-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095650

RESUMO

Mucus obstruction is a key feature of many inflammatory airway diseases. Neutrophil extracellular traps (NETs) are released upon neutrophil stimulation and consist of extracellular chromatin networks studded with cytotoxic proteins. When released in the airways, these NETs can become part of the airway mucus. We hypothesized that the extracellular DNA and/or oxidative stress (e.g., by the release of reactive oxygen species and myeloperoxidase during NETs formation in the airways) would increase mucus viscoelasticity. We collected human airway mucus from endotracheal tubes of healthy patients admitted for elective surgery and coincubated these samples with NETs from phorbol 12-myristate 13-acetate-stimulated neutrophils. Unstimulated neutrophils served as controls, and blocking experiments were performed with dornase alfa for extracellular DNA and the free radical scavenger dimethylthiourea for oxidation. Compared with controls, the coincubation of mucus with NETs resulted in 1) significantly increased mucus viscoelasticity (macrorheology) and 2) significantly decreased mesh pore size of the mucus and decreased movement of muco-inert nanoparticles through the mucus (microrheology), but 3) NETs did not cause visible changes in the microstructure of the mucus by scanning EM. Incubation with either dornase alfa or dimethylthiourea attenuated the observed changes in macrorheology and microrheology. This suggests that the release of NETs may contribute to airway mucus obstruction by increasing mucus viscoelasticity and that this effect is not solely due to the release of DNA but may in part be due to oxidative stress.


Assuntos
Armadilhas Extracelulares/imunologia , Muco/imunologia , Neutrófilos/imunologia , Sistema Respiratório/imunologia , Adulto , Obstrução das Vias Respiratórias/imunologia , Obstrução das Vias Respiratórias/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Muco/metabolismo , Neutrófilos/metabolismo , Estresse Oxidativo/imunologia , Peroxidase/imunologia , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Sistema Respiratório/metabolismo
2.
ACS Macro Lett ; 12(4): 446-453, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36951898

RESUMO

Low mucus penetration ability and cellular uptake seriously limit the effectiveness of local vaginal drug administration because of the rapid foreign particulate and pathogen removal property of the mucus layer. Our previous work proved that nanoparticles with a highly dense polyethylene glycol (PEG) coating can penetrate mucus rapidly (mucus-penetrating nanoparticles, MPPs) and improve drug distribution and retention at mucosal surfaces. However, the "stealth-effect" of the PEG coating also restricts cellular uptake of MPPs. In this work, we designed pH-responsive mucus-penetrating nanoparticles (pMPPs) with hydrazone bonds as the linker to conjugate a dense PEG surface coating, which enabled the pMPPs to rapidly penetrate through the mucus layer. More importantly, the acidic environment of the vaginal mucus induces slow shedding of the PEG layer, leading to a positive charge exposure to facilitate cellular uptake. Overall, pMPPs demonstrate potential as an effective delivery platform for the prophylactic and therapeutic treatment of female reproductive diseases.


Assuntos
Muco , Nanopartículas , Humanos , Feminino , Muco/química , Vagina/metabolismo , Transporte Biológico , Nanopartículas/uso terapêutico , Polietilenoglicóis/farmacologia , Concentração de Íons de Hidrogênio
3.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645821

RESUMO

Prior work suggests influenza A virus (IAV) crosses the airway mucus barrier in a sialic acid-dependent manner through the actions of the viral envelope proteins, hemagglutinin and neuraminidase. However, host and viral factors that influence how efficiently mucus traps IAV remain poorly defined. In this work, we assessed how the physicochemical properties of mucus influence its ability to effectively capture IAV with altered sialic acid preference using fluorescence video microscopy and multiple particle tracking. We found an airway mucus gel layer must be produced with pores on the order of size of the virus to physically constrain IAV. Sialic acid binding by IAV also improves mucus trapping efficiency, but interestingly, sialic acid preferences had little impact on the fraction of IAV particles expected to penetrate the mucus barrier. Together, this work provides new insights on mucus barrier function toward IAV with important implications on innate host defense and interspecies transmission.

4.
APL Bioeng ; 6(2): 026103, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35757278

RESUMO

Nanomaterial diffusion through mucus is important to basic and applied areas of research such as drug delivery. However, it is often challenging to interpret nanoparticle dynamics within the mucus gel due to its heterogeneous microstructure and biochemistry. In this study, we measured the diffusion of polyethylene glycolylated nanoparticles (NPs) in human airway mucus ex vivo using multiple particle tracking and utilized machine learning to classify diffusive vs sub-diffusive NP movement. Using mathematic models that account for the mode of NP diffusion, we calculate the percentage of NPs that would cross the mucus barrier over time in airway mucus with varied total solids concentration. From this analysis, we predict rapidly diffusing NPs will cross the mucus barrier in a physiological timespan. Although less efficient, sub-diffusive "hopping" motion, a characteristic of a continuous time random walk, may also enable NPs to cross the mucus barrier. However, NPs exhibiting fractional Brownian sub-diffusion would be rapidly removed from the airways via mucociliary clearance. In samples with increased solids concentration (>5% w/v), we predict up to threefold reductions in the number of nanoparticles capable of crossing the mucus barrier. We also apply this approach to explore diffusion and to predict the fate of influenza A virus within human mucus. We predict only a small fraction of influenza virions will cross the mucus barrier presumably due to physical obstruction and adhesive interactions with mucin-associated glycans. These results provide new tools to evaluate the extent of synthetic and viral nanoparticle penetration through mucus in the lung and other tissues.

5.
Sci Adv ; 8(47): eabq5049, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427316

RESUMO

Secreted mucus is a frontline defense against respiratory infection, enabling the capture and swift removal of infectious or irritating agents from the lungs. Airway mucus is composed of two mucins: mucin 5B (MUC5B) and 5AC (MUC5AC). Together, they form a hydrogel that can be actively transported by cilia along the airway surface. In chronic respiratory diseases, abnormal expression of these mucins is directly implicated in dysfunctional mucus clearance. Yet, the role of each mucin in supporting normal mucus transport remains unclear. Here, we generate human airway epithelial tissue cultures deficient in either MUC5B or MUC5AC to understand their individual contributions to mucus transport. We find that MUC5B and MUC5AC deficiency results in impaired and discoordinated mucociliary transport, respectively, demonstrating the importance of each mucin to airway clearance.


Assuntos
Mucina-5B , Infecções Respiratórias , Humanos , Mucina-5B/genética , Depuração Mucociliar , Epitélio , Cílios , Mucina-5AC/genética
6.
Commun Biol ; 5(1): 249, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318436

RESUMO

Mucus in the lung plays an essential role as a barrier to infection by viral pathogens such as influenza A virus (IAV). Previous work determined mucin-associated sialic acid acts as a decoy receptor for IAV hemagglutinin (HA) binding and the sialic-acid cleaving enzyme, neuraminidase (NA), facilitates virus passage through mucus. However, it has yet to be fully addressed how the physical structure of the mucus gel influences its barrier function and its ability to trap viruses via glycan mediated interactions to prevent infection. To address this, IAV and nanoparticle diffusion in human airway mucus and mucin-based hydrogels is quantified using fluorescence video microscopy. We find the mobility of IAV in mucus is significantly influenced by the mesh structure of the gel and in contrast to prior reports, these effects likely influence virus passage through mucus gels to a greater extent than HA and NA activity. In addition, an analytical approach is developed to estimate the binding affinity of IAV to the mucus meshwork, yielding dissociation constants in the mM range, indicative of weak IAV-mucus binding. Our results provide important insights on how the adhesive and physical barrier properties of mucus influence the dissemination of IAV within the lung microenvironment.


Assuntos
Vírus da Influenza A , Géis , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A/fisiologia , Mucinas/metabolismo , Muco/metabolismo , Ácido N-Acetilneuramínico/metabolismo
7.
ACS Biomater Sci Eng ; 7(6): 2723-2733, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33871978

RESUMO

As asthma worsens, occlusion of airways with mucus significantly contributes to airflow obstruction and reduced lung function. Recent evidence from clinical studies has shown mucus obtained from adults and children with asthma possesses altered mucin composition. However, how these changes alter the functional properties of the mucus gel is not yet fully understood. To study this, we have engineered a synthetic mucus biomaterial to closely mimic the properties of native mucus in health and disease. We demonstrate that this model possesses comparable biophysical and transport properties to native mucus ex vivo collected from human subjects and in vitro isolated from human airway epithelial (HAE) tissue cultures. We found by systematically varying mucin composition that mucus gel viscoelasticity is enhanced when predominantly composed of mucin 5AC (MUC5AC), as is observed in asthma. As a result, asthma-like synthetic mucus gels are more slowly transported on the surface of HAE tissue cultures and at a similar rate to native mucus produced by HAE cultures stimulated with type 2 cytokine IL-13, known to contribute to airway inflammation and MUC5AC hypersecretion in asthma. We also discovered that the barrier function of asthma-like synthetic mucus toward influenza A virus was impaired as evidenced by the increased frequency of infection in MUC5AC-rich hydrogel-coated HAE cultures. Together, this work establishes a biomaterial-based approach to understand airway dysfunction in asthma and related muco-obstructive lung diseases.


Assuntos
Asma , Materiais Biocompatíveis , Adulto , Criança , Humanos , Interleucina-13 , Muco , Mucosa Respiratória
8.
Viruses ; 12(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322395

RESUMO

Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.


Assuntos
Interações Hospedeiro-Patógeno , Mucosa Respiratória/virologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Respirovirus/fisiologia , Comunicação Celular , Técnicas de Cultura de Células , Células Cultivadas , Espaço Extracelular/metabolismo , Modelos Biológicos , Organoides , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Infecções por Respirovirus/patologia , Engenharia Tecidual , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA