Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 561: 228-235, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30836152

RESUMO

Glabridin, a compound in the root extract of Glycyrrhiza glabra, has been identified as an effective tyrosinase inhibitor. Applied on skin, melanin synthesis is inhibited, making glabridin an interesting candidate for skin whitening or for the treatment of age spots. However, main obstaclefor its practical use is its low dermal bioavailability, caused by its poor water solubility. In this work smartPearls technology was used to increase the glabridins water solubility. smartPearls consist of silica particles with mesopores in which actives can be loaded. By this, actives are stabilized in amorphous state and simultaneously finely distributed in nm-range. Both amorphization and nanoization are well known approaches to increase saturation solubilities. In smartPearls these approaches are combined. In the first step, glabridin smartPearls formulation was developed, screening systematically the suitability of 4 different silicas varying in their pore sizes (3, 6, 10, 17 nm). Also, most suited filling level of glabridin was determined (25, 50, 80% referred to total pore volume of respective silica). Silica loading was performed by the immersion-evaporation method, resulting in pores filled with glabridin from bottom to top. By light microscopy, dynamic scanning calorimetry and X-ray diffraction the sample with 6 nm pore size and filling levels of 25% and 50% have been verified to be completely amorphous. Highest physical storage stability of 7 months up to now was obtained for the 25% filled sample. In the next step, concept of increased saturation solubility for smartPearls was proven. Dissolution profiles were recorded in situ for glabridin smartPearls and compared to glabridin raw drug powder. Both saturation solubility and dissolution velocity were remarkably improved. The water solubility for example increased by a factor of more than 4. This makes glabridin smartPearls promising for creating skin products with improved dermal bioavailability.


Assuntos
Isoflavonas/química , Nanopartículas/química , Fenóis/química , Dióxido de Silício/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Solubilidade
2.
Beilstein J Nanotechnol ; 10: 1666-1678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467828

RESUMO

smartPearls are a dermal delivery system for poorly soluble active agents, consisting of nanoporous silica particles loaded with a long-term stable, amorphous active agent in its mesopores (2-50 nm). The amorphous state of the active agent is known to increase dermal bioavailability. For use in marketed products, optimal silica types were identified from commercially available, regulatory accepted silica. In addition, a scalable production process was demonstrated. The loading of the particles was performed by applying the immersion-evaporation method. The antioxidant rutin was used as a model active agent and ethanol was applied as the solvent. Various silica particles (Syloid®, Davisil®) differing in particle size (7-50 µm), pore diameter (3-25 nm) and pore volume (0.4-1.75 mL/g) were investigated regarding their ease of processing. The evaporation from the silica-ethanol suspensions was performed in a rotary evaporator. The finest powders were obtained with larger-sized silica. The maximum loading staying amorphous was achieved between 10% and 25% (w/w), depending on the silica type. A loading mechanism was also proposed. The most suitable processing occurred with the large-sized Syloid® XDP 3050 silica with a 50 µm particle size and a pore diameter of 25 nm, resulting in 18% (w/w) maximum loading. Based on a 10% (w/w) loading and the amorphous solubility of the active agent, for a 100 kg dermal formulation, about 500 g of loaded particles were required. This corresponds to production of 5 kg of loaded smartPearls for a formulation batch size of a ton. The production of 5 kg (i.e., about 25 L of solvent removal) can be industrially realized in a commercial 50 L rotary evaporator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA