Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G471-G491, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697947

RESUMO

The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.


Assuntos
Bacteriemia , Infecções Bacterianas , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Deleção de Genes , Fígado , Citocinas/genética , Bacteriemia/complicações , Bacteriemia/genética , Nucleotídeos , Arginina , Receptores Purinérgicos , Aminoácidos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2Y2/genética , Camundongos Knockout
2.
J Neurooncol ; 159(2): 261-270, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816267

RESUMO

INTRODUCTION: We aimed to evaluate IDH1 p.R132H mutation and 2-hydroxyglutarate (2HG) in cerebrospinal fluid (CSF) as biomarkers for patients with IDH-mutant gliomas. METHODS: CSF was collected from patients with infiltrating glioma, and 2HG levels were measured by liquid chromatography-mass spectrometry. IDH1 p.R132H mutant allele frequency (MAF) in CSF-ctDNA was measured by digital droplet PCR (ddPCR). Tumor volume was measured from standard-of-care magnetic resonance images. RESULTS: The study included 48 patients, 6 with IDH-mutant and 42 with IDH-wildtype gliomas, and 57 samples, 9 from the patients with IDH-mutant and 48 from the patients with IDH-wildtype gliomas. ctDNA was detected in 7 of the 9 samples from patients with IDH-mutant glioma, and IDH1 p.R132H mutation was detected in 5 of the 7 samples. The MAF ranged from 0.3 to 39.95%. Total 2HG level, D-2HG level, and D/L-2HG ratio in CSF were significantly higher in patients with IDH-mutant gliomas than in patients with IDH-wildtype gliomas. D-2HG level and D/L-2HG ratio correlated with total tumor volume in patients with IDH-mutant gliomas but not in patients with IDH-wildtype gliomas. CONCLUSION: Our results suggest that detection of IDH1 p.R132H mutation by ddPCR and increased D-2HG level in CSF may help identify IDH-mutant gliomas. Our results also suggest that D-2HG level and D/L-2HG ratio correlate with tumor volume in patients with IDH-mutant gliomas. Further prospective studies with larger cohorts are needed to validate these findings.


Assuntos
DNA Tumoral Circulante , Glioma , Isocitrato Desidrogenase , Biomarcadores , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/diagnóstico , DNA Tumoral Circulante/líquido cefalorraquidiano , Glioma/diagnóstico , Glutaratos , Humanos , Isocitrato Desidrogenase/líquido cefalorraquidiano , Isocitrato Desidrogenase/genética , Mutação , Estudos Prospectivos
3.
Mol Cell Proteomics ; 18(9): 1732-1744, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221720

RESUMO

Toll-like receptor 2 (TLR2) is a pattern recognition receptor that, upon ligation by microbial molecules, interacts with other proteins to initiate pro-inflammatory responses by the cell. Statins (hydroxymethylglutaryl coenzyme A reductase inhibitors), drugs widely prescribed to reduce hypercholesterolemia, are reported to have both pro- and anti-inflammatory effects upon cells. Some of these responses are presumed to be driven by effects on signaling proteins at the plasma membrane, but the underlying mechanisms remain obscure. We reasoned that profiling the effect of statins on the repertoire of TLR2-interacting proteins might provide novel insights into the mechanisms by which statins impact inflammation. In order to study the TLR2 interactome, we designed a coimmunoprecipitation (IP)-based cross-linking proteomics study. A hemagglutinin (HA)-tagged-TLR2 transfected HEK293 cell line was used to precipitate the TLR2 interactome upon cell exposure to the TLR2 agonist Pam3CSK4 and simvastatin, singly and in combination. To stabilize protein interactors, we used two different chemical cross-linkers with different spacer chain lengths. Proteomic analysis revealed important combinatorial effects of simvastatin and Pam3CSK4 on the TLR2 interactome. After stringent data filtering, we identified alpha-centractin (ACTR1A), an actin-related protein and subunit of the dynactin complex, as a potential interactor of TLR2. The interaction was validated using biochemical methods. RNA interference studies revealed an important role for ACTR1A in induction of pro-inflammatory cytokines. Taken together, we report that statins remodel the TLR2 interactome, and we identify ACTR1A, a part of the dynactin complex, as a novel regulator of TLR2-mediated immune signaling pathways.


Assuntos
Actinas/metabolismo , Sinvastatina/farmacologia , Receptor 2 Toll-Like/metabolismo , Actinas/genética , Proteínas de Ligação a Calmodulina/metabolismo , Reagentes de Ligações Cruzadas/química , Citocinas/metabolismo , Células HEK293 , Humanos , Lipopeptídeos/farmacologia , Proteínas dos Microfilamentos/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Reprodutibilidade dos Testes , Transdução de Sinais , Receptor 2 Toll-Like/agonistas
4.
J Sep Sci ; 43(11): 2125-2132, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32073721

RESUMO

Methanol-chloroform based protein precipitation is an essential step in many liquid chromatography-tandem mass spectrometry-based cellular proteomics applications. However, re-solubilization of the total protein precipitate is difficult using regular in-solution digestion protocol. Sodium deoxycholate is reported as an efficient surfactant for re-solubilization of membrane fractions. In this study, we demonstrated an application combining methanol-chloroform based protein precipitations and deoxycholic acid assisted re-solubilization of pellets to evaluate the improvement of protein identifications in mass spectrometry-based bottom-up proteomics. We evaluated the modified method using an equal amount of Raw 264.7 mouse macrophage cell lysate. Detailed in-solution trypsin digestion studies were presented on methanol-chloroform precipitated samples with or without deoxycholic acid treatments and compared with popular sample digestion methods. A mass spectrometric analysis confirmed an 82% increase in protein identification in deoxycholic acid-treated samples compared to other established methods. Furthermore, liquid chromatography-tandem mass spectrometry analysis of an equal amount of proteins from methanol-chloroform precipitated, and methanol-chloroform/deoxycholic acid-treated macrophage cell lysate showed a 14% increase and 27% unique protein identifications. We believe this improved digestion method could be a complementary or alternative method for mammalian cell sample preparations where sodium dodecyl sulfate based lysis buffer is frequently used.


Assuntos
Clorofórmio/metabolismo , Metanol/metabolismo , Proteômica , Tripsina/análise , Tripsina/metabolismo , Animais , Bicarbonatos/química , Bicarbonatos/metabolismo , Clorofórmio/química , Cromatografia Líquida , Metanol/química , Camundongos , Células RAW 264.7 , Soluções , Espectrometria de Massas em Tandem
5.
Biometals ; 30(5): 765-785, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28936772

RESUMO

Copper (Cu) is a important micronutrient for plants, but it is extremely toxic to plants at high concentration and can inactivate and disturb protein structures. To explore the Cu stress-induced tolerance mechanism, the present study was conducted on the roots of sorghum seedlings exposed to 50 and 100 µM CuSO4 for 5 days. Accumulation of Cu increased in roots when the seedlings were treated with the highest concentration of Cu2+ ions (100 µM). Elevated Cu concentration provoked notable reduction of Fe, Zn, Ca, and Mn uptake in the roots of sorghum seedlings. In the proteome analysis, high-throughput two-dimensional polyacrylamide gel electrophoresis combined with MALDI-TOF-TOF MS was performed to explore the molecular responses of Cu-induced sorghum seedling roots. In two-dimensional silver-stained gels, 422 protein spots were identified in the 2-D gel whereas twenty-one protein spots (≥1.5-fold) were used to analyze mass spectrometry from Cu-induced sorghum roots. Among the 21 differentially expressed proteins, 10 proteins were increased, while 11 proteins were decreased due to the intake of Cu ions by roots of sorghum. Abundance of most of the identified proteins from the roots that function in stress response and metabolism was remarkably enhanced, while proteins involved in transcription and regulation were severely reduced. Taken together, these results imply insights into a potential molecular mechanism towards Cu stress in C4 plant, sorghum.


Assuntos
Cobre/toxicidade , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/efeitos dos fármacos , Proteoma/genética , Plântula/efeitos dos fármacos , Adaptação Fisiológica/genética , Cálcio/metabolismo , Cátions Bivalentes , Ontologia Genética , Transporte de Íons/efeitos dos fármacos , Ferro/metabolismo , Manganês/metabolismo , Anotação de Sequência Molecular , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Plântula/genética , Plântula/metabolismo , Sorghum , Estresse Fisiológico , Zinco/metabolismo
6.
Mol Biol Rep ; 43(2): 73-89, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26754663

RESUMO

To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Fótons , Proteínas de Plantas/genética , Raízes de Plantas/genética , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Inundações , Ontologia Genética , Glicólise/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Luz , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Anotação de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sacaropina Desidrogenases/genética , Sacaropina Desidrogenases/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo
7.
Biometals ; 29(3): 495-513, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067443

RESUMO

Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.


Assuntos
Sulfato de Cobre/farmacologia , Folhas de Planta/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Sulfato de Cobre/química , Sulfato de Cobre/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteoma/química , Proteoma/metabolismo , Sorghum/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico/efeitos dos fármacos
8.
J Proteome Res ; 14(5): 2219-36, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25806999

RESUMO

To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas Mitocondriais/genética , Fótons , Raízes de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Fracionamento Celular , Ciclo do Ácido Cítrico/genética , Inundações , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Oxirredução , Fosforilação Oxidativa , Raízes de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Glycine max/metabolismo , Estresse Fisiológico/genética
9.
Biochim Biophys Acta ; 1844(7): 1208-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726903

RESUMO

Biophotons are ultraweak photon emissions that are closely related to various biological activities and processes. In mammals, biophoton emissions originate from oxidative bursts in immunocytes during immunological responses. Biophotons emitted from plant organs provide novel information about the physiological state of plant under in vivo condition. In this review, the principles and recent advances in the measurement of biophoton emissions in plants are described. Furthermore, examples of biophoton emission and proteomics in soybean under abiotic stress are reviewed and discussed. Finally, this review suggests that the application of proteomics should provide a better interpretation of plant response to biophoton emission and allow the identification of genes that will allow the screening of crops able to produce maximal yields, even in stressful environments.


Assuntos
Glycine max/metabolismo , Fótons , Proteoma/análise , Proteômica , Estresse Fisiológico
10.
Mol Biol Rep ; 41(5): 3499-507, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24615502

RESUMO

Breast cancer is the most common type of cancer in women in many areas and is increasing found in developing countries, where the majority of cases are diagnosed in late stages. Retinoic acids, through their associated nuclear receptors, exert intoxicating effects on cell growth, differentiation and apoptosis, and hold significant promise in relation to cancer therapy and chemoprevention. To enhance our understanding of the molecular mechanisms associated with retinoic acids in the breast cancer cell line MCF-7 in a time-dependent manner, we conducted a proteomic analysis of MCF-7 cells using the 2-DE couple with high-throughput mass spectrometry and bioinformatics tools. In the 2-DE patterns of MCF-7 cells treated with retinoic acid in a time-dependent manner, 35 protein spots were found to be differentially expressed. These were 17 increased, 4 decreased, and 14 unevenly expressed protein spots, all of which were analyzed using LTQ-FTICR mass spectrometry. Furthermore, five candidate proteins, up-regulated, were validated by western blotting. These were nucleoredoxin, latexin, aminomethyltransferase, translationally controlled one tumor protein, and rab GDP dissociation inhibitor ß. These observations represent novel findings leading to new insight into the exact mechanism behind the effect of retinoic acids in MCF-7 cells while also identifying possible therapeutic targets for breast cancer diagnosis and novel drug development paths for the treatment of this disease.


Assuntos
Neoplasias da Mama/metabolismo , Proteoma , Proteômica , Tretinoína/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional/métodos , Feminino , Humanos , Células MCF-7 , Proteômica/métodos , Reprodutibilidade dos Testes
11.
Mol Biol Rep ; 41(8): 5359-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24958017

RESUMO

Mitochondria are important organelles for cellular respiration within the eukaryotic cell and have many important functions including vitamin synthesis, amino acid metabolism and photorespiration. To investigate the mitochondrial proteome of the roots of wheat seedlings, a systematic and targeted analysis were carried out on the mitochondrial proteome from 15 day-old wheat seedling root material. Mitochondria were isolated by Percoll gradient centrifugation; and extracted proteins were disassociated and analyzed by Tricine SDS-PAGE couple to LTQ-FTICR mass spectrometry. From the isolated the sample, 184 proteins were identified which is composed of 140 proteins as mitochondria and 44 proteins as other subcellular proteins that are predicted by the freeware sub-cellular predictor. The identified proteins in mitochondria were functionally classified into 12 classes using the ProtFun 2.2 servers based on biological processes. Proteins were shown to be involved in amino acid biosynthesis (17.1%), biosynthesis of cofactors (6.4%), cell envelope (11.4%), central intermediary metabolism (10%), energy metabolism (20%), fatty acid metabolism (0.7%), purines and pyrimidines (5.7%), regulatory functions (0.7%), replication and transcription (1.4%), translation (22.1%), transport and binding (1.4%), and unknown (2.8%). These results indicate that many of the protein components present and functions of identifying proteins are common to other profiles of mitochondrial proteins performed to date. These results are provided the extensive and noble clues, to our knowledge, of mitochondrial proteins from wheat roots.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Triticum/metabolismo , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Espectrometria de Massas , Proteínas Mitocondriais/genética , Organelas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Proteoma/genética , Proteômica , Triticum/genética
12.
J Autism Dev Disord ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033254

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a wide range of behavioral and cognitive impairments. While genetic and environmental factors are known to contribute to its etiology, metabolic perturbations associated with ASD, which can potentially connect genetic and environmental factors, remain poorly understood. Therefore, we conducted a metabolomic case-control study and performed a comprehensive analysis to identify significant alterations in metabolite profiles between children with ASD and typically developing (TD) controls in order to identify specific metabolites that may serve as biomarkers for the disorder. We conducted metabolomic profiling on plasma samples from participants in the second phase of Epidemiological Research on Autism in Jamaica, an age and sex-matched cohort of 200 children with ASD and 200 TD controls (2-8 years old). Using high-throughput liquid chromatography-mass spectrometry techniques, we performed a targeted metabolite analysis, encompassing amino acids, lipids, carbohydrates, and other key metabolic compounds. After quality control and missing data imputation, we performed univariable and multivariable analysis using normalized metabolites while adjusting for covariates, age, sex, socioeconomic status, and child's parish of birth. Our findings revealed unique metabolic patterns in children with ASD for four metabolites compared to TD controls. Notably, three metabolites were fatty acids, including myristoleic acid, eicosatetraenoic acid, and octadecenoic acid. The amino acid sarcosine exhibited a significant association with ASD. These findings highlight the role of metabolites in the etiology of ASD and suggest opportunities for the development of targeted interventions.

13.
Mol Omics ; 19(1): 48-59, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36377691

RESUMO

Toll-like receptor 4 (TLR4), a pattern recognition receptor, is activated by lipopolysaccharides (LPS) and induces the MyD88 pathway, which subsequently produces pro-inflammatory cytokines through activation of transcriptional nuclear factor (NF)-κB. Statins have been widely prescribed to reduce cholesterol synthesis for patients with cardiovascular disease. Statins may have pleiotropic effects, which include anti- and pro-inflammatory effects on cells. The molecular mechanism of the sequential influence of LPS and statin on the innate immune system remains unknown. We employed affinity purification-spacer-arm controlled cross-linking (AP-SPACC) MS-based proteomics analysis to identify the LPS- and statin-LPS-responsive proteins and their networks. LPS-stimulated RAW 264.7 macrophage cells singly and combined with the drug statin used in this study. Two chemical cross-linkers with different spacer chain lengths were utilized to stabilize the weak and transient interactors. Proteomic analysis identified 1631 differentially expressed proteins. We identified 151 immune-response proteins through functional enrichment analysis and visualized their interaction networks. Selected candidate protein-coding genes were validated, specifically squamous cell carcinoma antigens recognized by T cells 3, sphingosine-1-phosphate lyase 1, Ras-related protein Rab-35, and tumor protein D52 protein-coding genes through transcript-level expression analysis. The expressions of those genes were significantly increased upon statin treatment and decreased in LPS-stimulated macrophage cells. Therefore, we presumed that the expression changes of genes occurred due to immune response during activation of inflammation. These results highlight the immune-responsive proteins network, providing a new platform for novel investigations and discovering future therapeutic targets for inflammatory diseases.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Proteômica , Macrófagos/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia
14.
Methods Mol Biol ; 2690: 255-267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450153

RESUMO

Protein-protein interactions (PPIs) are the physical interactions formed among proteins. These interactions are primarily functional, i.e., they arise from specific biomolecular events, and each interaction interface serves a specific purpose. A significant number of methods have been developed for protein interactions in the field of proteomics in the last decade. Advanced mass spectrometry technology significantly contributed to the development of these methods. The rapid advancement of groundbreaking MS technology has greatly aided the mapping of protein interaction from large-data sets comprehensively. This chapter describes the affinity purification (AP) mass spectrometry (MS)-based methods combined with chemical cross-linking (XL) of protein complexes. This chapter includes sample preparation methods involving cell culture, cell treatments with ligands, drugs, and cross-linkers, protein extractions, affinity purification, sodium dodecyl sulfate (SDS) polyacrylamide gel separation, in-solution or in-gel digestion, liquid-chromatography, and mass spectrometry analysis of samples (LC-MS/MS). Application of a cleavable cross-linker, dual cleavable cross-linking technology (DUCCT) in combination with the affinity purification (AP) method has also been described. Methods for data analysis using unmodified and cross-linked peptide analysis are discussed.


Assuntos
Mapas de Interação de Proteínas , Proteômica , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Proteínas/química , Mapeamento de Interação de Proteínas/métodos , Reagentes de Ligações Cruzadas/química
15.
Mol Biol Rep ; 39(5): 5069-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22160430

RESUMO

We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767 unique proteins. Our findings represent the most comprehensive exploration of a proteome to date. Based on annotation information from the UniProtKB/Swiss-Prot database and our analyses via WoLF PSORT and PSORT, these proteins are localized in the chloroplast (607 proteins), chloroplast stroma (145), thylakoid membrane (342), lumens (163), and integral membranes (166). In all, 67% were confirmed as chloroplast thylakoid proteins. Although nearly complete protein coverage (89% proteins) has been accomplished for the key chloroplast pathways in wheat, such as for photosynthesis, many other proteins are involved in regulating carbon metabolism. The identified proteins were assigned to 103 functional categories according to a classification system developed by the iProClass database and provided through Protein Information Resources. Those functions include electron transport, energy, cellular organization and biogenesis, transport, stress responses, and other metabolic processes. Whereas most of these proteins are associated with known complexes and metabolic pathways, about 13% of the proteins have unknown functions. The chloroplast proteome contains many proteins that are localized to the thylakoids but as yet have no known function. We propose that some of these familiar proteins participate in the photosynthetic pathway. Thus, our new and comprehensive protein profile may provide clues for better understanding that photosynthetic process in wheat.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Tilacoides/metabolismo , Triticum/metabolismo , Centrifugação com Gradiente de Concentração , Modelos Biológicos , Fotossíntese , Frações Subcelulares/metabolismo
16.
Mol Biol Rep ; 39(9): 9059-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22736107

RESUMO

Leaves are the final site of salinity perception through the roots. To better understand how wheat chloroplasts proteins respond to salt stress, the study aimed to the physiochemical and comparative proteomics analysis. Seedlings (12-days-old) were exposed to 150 mM NaCl for 1, 2, or 3 days. Na(+) ions were rapid and excessively increase in roots, stems and leaves. Photosynthesis and transpiration rate, stomatal conductance, and relative water content decreased whereas the level of proline increased. Statistically significant positive correlations were found among the content of hydrogen peroxide, activity of catalase, and superoxide dismutase under salt stress in wheat. Protein abundance within the chloroplasts was examined by two-dimensional electrophoresis. More than 100 protein spots were reproducibly detected on each gel, 21 protein spots were differentially expressed during salt treatment. Using linear quadruple trap-Fourier transform ion cyclotron resonance (LTQ-FTICR) hybrid mass spectrometry, 65 unique proteins assigned in the differentially abundant spots. Most proteins were up-regulated at 2 and 3 days after being down-regulated at 1 day. Others showed only slight responses after 3 days of treatment, including Rubisco, glutamate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase, photosystem I, and pyridoxal biosynthesis protein PDX1.2 and PDX1.3. The ATP synthase (α, ß, and γ) and V-type proton ATPase subunits were down-regulated resulting showed negative impact by Na(+) on the photosynthetic machinery. This ephemeral increase and subsequent decrease in protein contents may demonstrate a counterbalancing influence of identified proteins. Several proteins such as cytochrome b6-f (Cyt b6-f), germin-like-protein, the γ-subunit of ATP synthase, glutamine synthetase, fructose-bisphosphate aldolase, S-adenosylmethionine synthase, carbonic anhydrase were gradually up-regulated during the period of treatment, which can be identified as marker proteins.


Assuntos
Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Salinidade , Estresse Fisiológico , Triticum/metabolismo , Íons/metabolismo , Folhas de Planta/metabolismo , Proteoma , Proteômica/métodos , Plântula/metabolismo , Cloreto de Sódio/metabolismo
17.
Proteomes ; 10(3)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136309

RESUMO

Toll-like receptor 4 (TLR4) is a receptor on an immune cell that can recognize the invasion of bacteria through their attachment with bacterial lipopolysaccharides (LPS). Hence, LPS is a pro-immune response stimulus. On the other hand, statins are lipid-lowering drugs and can also lower immune cell responses. We used human embryonic kidney (HEK 293) cells engineered to express HA-tagged TLR-4 upon treatment with LPS, statin, and both statin and LPS to understand the effect of pro- and anti-inflammatory responses. We performed a monoclonal antibody (mAb) directed co-immunoprecipitation (CO-IP) of HA-tagged TLR4 and its interacting proteins in the HEK 293 extracted proteins. We utilized an ETD cleavable chemical cross-linker to capture weak and transient interactions with TLR4 protein. We tryptic digested immunoprecipitated and cross-linked proteins on beads, followed by liquid chromatography-mass spectrometry (LC-MS/MS) analysis of the peptides. Thus, we utilized the label-free quantitation technique to measure the relative expression of proteins between treated and untreated samples. We identified 712 proteins across treated and untreated samples and performed protein network analysis using Ingenuity Pathway Analysis (IPA) software to reveal their protein networks. After filtering and evaluating protein expression, we identified macrophage myristoylated alanine-rich C kinase substrate (MARCKSL1) and creatine kinase proteins as a potential part of the inflammatory networks of TLR4. The results assumed that MARCKSL1 and creatine kinase proteins might be associated with a statin-induced anti-inflammatory response due to possible interaction with the TLR4.

18.
Metabolites ; 12(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736477

RESUMO

Bladder Cancer (BLCA) is the ninth most frequently diagnosed cancer globally and the sixth most common cancer in the US. African Americans (AA) exhibit half the BLCA incidence compared to European Americans (EA), but they have a 70% higher risk of cancer-related death; unfortunately, this disparity in BLCA mortality remains poorly understood. In this study, we have used an ethnicity-balanced cohort for unbiased lipidomics profiling to study the changes in the lipid fingerprint for AA and EA BLCA tissues collected from similar geographical regions to determine a signature of ethnic-specific alterations. We identified 86 lipids significantly altered between self-reported AA and EA BLCA patients from Augusta University (AU) cohort. The majority of altered lipids belong to phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), ly sophosphatidylcholines (lysoPCs), phosphatidylserines (PSs), and diglycerides (DGs). Interestingly, levels of four lysoPCs (lyso PCs 20:3, lyso PCs 22:1, lyso PCs 22:2, and lyso PCs 26:1) were elevated while, in contrast, the majority of the PCs were reduced in AA BLCA. Significant alterations in long-chain monounsaturated (MonoUN) and polyunsaturated (PolyUN) lipids were also observed between AA and EA BLCA tumor tissues. These first-in-field results implicate ethnic-specific lipid alterations in BLCA.

19.
EXCLI J ; 21: 93-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221837

RESUMO

The aim of this study was to investigate the COVID-19 vaccination acceptance rate and its determinants among healthcare workers in a multicenter study. This was a cross-sectional multi-center survey conducted from February 5 to April 29, 2021. The questionnaire consisted of 26 items in 6 subscales. The English version of the questionnaire was translated into seven languages and distributed through Google Forms using snowball sampling; a colleague in each country was responsible for the forward and backward translation, and also the distribution of the questionnaire. A forward stepwise logistic regression was utilized to explore the variables and questionnaire factors tied to the intention to COVID-19 vaccination. 4630 participants from 91 countries completed the questionnaire. According to the United Nations Development Program 2020, 43.6 % of participants were from low Human Development Index (HDI) regions, 48.3 % high and very high, and 8.1 % from medium. The overall vaccination hesitancy rate was 37 %. Three out of six factors of the questionnaire were significantly related to intention to the vaccination. While 'Perceived benefits of the COVID-19 vaccination' (OR: 3.82, p-value<0.001) and 'Prosocial norms' (OR: 5.18, p-value<0.001) were associated with vaccination acceptance, 'The vaccine safety/cost concerns' with OR: 3.52, p-value<0.001 was tied to vaccination hesitancy. Medical doctors and pharmacists were more willing to take the vaccine in comparison to others. Importantly, HDI with OR: 12.28, 95 % CI: 6.10-24.72 was a strong positive determinant of COVID-19 vaccination acceptance. This study highlighted the vaccination hesitancy rate of 37 % in our sample among HCWs. Increasing awareness regarding vaccination benefits, confronting the misinformation, and strengthening the prosocial norms would be the primary domains for maximizing the vaccination coverage. The study also showed that the HDI is strongly associated with the vaccination acceptance/hesitancy, in a way that those living in low HDI contexts are more hesitant to receive the vaccine.

20.
Adv Sci (Weinh) ; 8(19): e2005047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365742

RESUMO

Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.


Assuntos
Carcinogênese/metabolismo , Diferenciação Celular/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Fator 1 de Modelagem da Cromatina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Neuroblastoma/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA