Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(5): 2706-2720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38056563

RESUMO

Making cheese from camel milk (CM) presents various challenges due to its different physicochemical properties compared with bovine milk (BM). In this study, we investigated the chemical composition, proteolysis, meltability, oiling off, texture profile, color, microstructure, and rheological properties of low-fat Cheddar cheese (LFCC) prepared from BM-CM blends. LFCC was produced from BM or BM supplemented with 15% CM (CM15) and 30% CM (CM30), and analyzed after 14, 60, 120, and 180 d of ripening at 8°C. Except for salt content, no significant differences were observed among LFCC from BM, CM15, and CM30. The addition of CM increased the meltability and oiling off in the resulting cheese throughout storage. With respect to color properties, after melting, LFCC CM30 showed lower L* values than LFCC made from BM and CM15, and a* and b* values were higher than those of BM and CM15 samples. LFCC from CM30 also exhibited lower hardness compared with the other cheeses. Moreover, LFCC made from BM showed a rough granular surface, but cheese samples made from BM-CM blends exhibited a smooth surface. The rheological parameters, including storage modulus, loss modulus, and loss tangent, varied among cheese treatments. The determined acetoin and short-chain volatile acids (C2-C6) in LFCC were affected by the use of CM, because CM15 showed significantly higher amounts than BM and CM30, respectively. The detailed interactions between BM and CM in the cheese matrix should be further investigated.

2.
J Dairy Sci ; 107(5): 2573-2585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37977446

RESUMO

Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of ß-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. ß-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of ß-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high ß-/αs-casein ratio and protective proteins, in addition to the absence of ß-lactoglobulin.

3.
J Dairy Sci ; 106(10): 6671-6687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562642

RESUMO

During fermentation, camel milk forms a fragile, acid-induced gel, which is less stable compared with the gel formed by bovine milk. In this study, camel milk was supplemented with different levels of soy extract, and the obtained blends were fermented with 2 different starter culture strains (a high acidic culture and a low acidic culture). The camel milk-soy extract yogurt treatments were evaluated for pH value, acidity, total phenolic compounds, antioxidant capacities, degree of hydrolysis, α-amylase and α-glucosidase inhibition, angiotensin-converting enzyme inhibition, antiproliferative activities, and rheological properties after 1 and 21 d of storage at 4°C. The results revealed that some of the investigated parameters were significantly affected by the starter culture strain and storage period. For instance, the effect of starter cultures was evident for the degree of hydrolysis, antioxidant capacities, proliferation inhibition, and rheological properties because these treatments led to different responses. Furthermore, the characteristics of camel milk-soy extract yogurt were also influenced by the supplementation level of soy extract, particularly after 21 d of storage. This study could provide valuable knowledge to the dairy industry because it highlighted the characteristics of camel milk-soy yogurt prepared with 2 different starter culture strains.


Assuntos
Camelus , Leite , Animais , Leite/química , Camelus/metabolismo , Viscosidade , Antioxidantes/metabolismo , Iogurte , Fermentação
4.
J Dairy Sci ; 106(12): 8221-8238, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641311

RESUMO

The manufacture of camel milk (CM) yogurt has been associated with several challenges, such as the weak structure and watery texture, thereby decreasing its acceptability. Therefore, this study aimed to investigate the effect of whey protein isolate (WPI) addition on the health-promoting benefits, texture profile, and rheological properties of CM yogurt after 1 and 15 d of storage. Yogurt was prepared from CM supplemented with 0, 3, and 5% of WPI and compared with bovine milk yogurt. The results show that the water holding capacity was affected by WPI addition representing 31.3%, 56.8%, 64.7%, and 45.1% for yogurt from CM containing 0, 3 or 5% WPI, and bovine milk yogurt, respectively, after 15 d. The addition of WPI increased yogurt hardness, adhesiveness, and decreased the resilience. CM yogurt without WPI showed lower apparent viscosity, storage modulus, and loss modulus values compared with other samples. The supplementation of CM with WPI improved the rheological properties of the obtained yogurt. Furthermore, the antioxidant activities of yogurt before and after in vitro digestion varied among yogurt treatments, which significantly increased after digestion except the superoxide anion scavenging and lipid oxidation inhibition. After in vitro digestion at d 1, the superoxide anion scavenging of the 4 yogurt treatments respectively decreased from 83.7%, 83.0%, 79.1%, and 87.4% to 36.7%, 38.3%, 44.6%, and 41.3%. The inhibition of α-amylase and α-glucosidase, angiotensin-converting enzyme inhibition, cholesterol removal, and degree of hydrolysis exhibited different values before and after in vitro digestion.


Assuntos
Proteínas do Leite , Leite , Animais , Leite/química , Proteínas do Soro do Leite/química , Proteínas do Leite/análise , Iogurte , Camelus/metabolismo , Superóxidos
5.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903269

RESUMO

The milk of mammals is a complex fluid mixture of various proteins, minerals, lipids, and other micronutrients that play a critical role in providing nutrition and immunity to newborns. Casein proteins together with calcium phosphate form large colloidal particles, called casein micelles. Caseins and their micelles have received great scientific interest, but their versatility and role in the functional and nutritional properties of milk from different animal species are not fully understood. Caseins belong to a class of proteins that exhibit open and flexible conformations. Here, we discuss the key features that maintain the structures of the protein sequences in four selected animal species: cow, camel, human, and African elephant. The primary sequences of these proteins and their posttranslational modifications (phosphorylation and glycosylation) that determine their secondary structures have distinctively evolved in these different animal species, leading to differences in their structural, functional, and nutritional properties. The variability in the structures of milk caseins influence the properties of their dairy products, such as cheese and yogurt, as well as their digestibility and allergic properties. Such differences are beneficial to the development of different functionally improved casein molecules with variable biological and industrial utilities.


Assuntos
Queijo , Micelas , Recém-Nascido , Animais , Feminino , Bovinos , Humanos , Leite/química , Caseínas/química , Sequência de Aminoácidos , Proteínas do Leite/análise , Mamíferos
6.
J Dairy Sci ; 105(6): 4843-4856, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35379457

RESUMO

Camel milk (CM) can be used as an ingredient to produce various dairy products but it forms weak rennet-induced and acid-induced gels compared with bovine milk (BM). Therefore, in this study, we aimed to investigate the effect of blending bovine milk with camel milk on the physicochemical, rheological (amplitude sweep and frequency sweep), and microstructural properties of low-fat akawi (LFA) cheese. The cheeses were made of BM only or BM blended with 15% (CM15%) or 30% (CM30%) camel milk and stored at 4°C for 28 d. The viscoelastic properties as a function of temperature were assessed. The LFA cheeses made from blended milks had higher moisture, total Ca, and soluble Ca contents, and had higher pH 4.6-water-soluble nitrogen compared with those made from BM. Analysis by scanning electron microscopy demonstrated that the microstructures formed in BM cheese were rough with granular surfaces, whereas those in blended milk cheeses had smooth surfaces. Hardness was lower for LFA cheeses made from blended milk than for those made from BM only. The LFA cheeses demonstrated viscoelastic behavior in a linear viscoelastic range from 0.1 to 1.0% strain. The storage modulus (G') was lower in LFA cheese made from BM over a range of frequencies. Adding CM reduced the resistance of LFA cheeses to flow as temperature increased. Blended cheeses exhibited lower complex viscosity values than BM cheeses during temperature increases. Thus, the addition of camel milk improved the rheological properties of LFA cheese.


Assuntos
Queijo , Animais , Camelus , Queijo/análise , Manipulação de Alimentos , Leite/química , Reologia , Viscosidade
7.
J Dairy Sci ; 105(6): 4722-4733, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35379458

RESUMO

The consumption of fermented dairy products has been linked with lowering the risk of type 2 diabetes mellitus (T2DM), but studies have yet to demonstrate a definite association. We evaluated evidence from a cross-sectional analysis of longitudinal studies and human and animal experimental trials to further understand the current knowledge linking short- and long-term consumption of fermented dairy products to T2DM. Most cohort studies revealed a protective effect of fermented dairy products on T2DM development, with yogurt noted as the most consistent food item protecting against the disease. Human experimental trials and animal studies revealed improvements in biomarkers of glycemic control with short-term monitored intake of fermented dairy products from various sources. Therefore, fermented dairy products may offer protection against the development and may have therapeutic benefits for individuals with T2DM. This could influence on dietary recommendations and the development of functional foods aiming to minimize the risk of T2DM.


Assuntos
Produtos Fermentados do Leite , Diabetes Mellitus Tipo 2 , Animais , Estudos Transversais , Laticínios , Diabetes Mellitus Tipo 2/prevenção & controle , Diabetes Mellitus Tipo 2/veterinária , Dieta/veterinária , Humanos , Fatores de Risco
8.
J Dairy Sci ; 105(11): 8734-8749, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175220

RESUMO

Camel (CM) milk is used in variety of ways; however, it has inferior gelling properties compared with bovine milk (BM). In this study, we aimed to investigate the physicochemical, functional, microstructural, and rheological properties of low-moisture part-skim (LMPS) mozzarella cheese, made from BM, or BM mixed with 15% CM (CM15%) or 30% CM (CM30%), at various time points (up to 60 d) of storage at 4°C after manufacture. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% had high moisture and total Ca contents, but lower soluble Ca content. Compared with BM cheese, CM15% and CM30% LMPS mozzarella cheese exhibited higher proteolysis rates during storage. Adding CM affected the color properties of LMPS mozzarella cheese manufactured from mixed milk. Scanning electron microscopy images showed that the microstructure of CM15% and CM30% cheeses had smooth surfaces, whereas the BM cheese microstructures were rough with granulated surfaces. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% showed significantly lower hardness and chewiness, but higher stringiness than BM cheese. Compared with BM cheese, CM15% and CM30% cheeses showed lower tan δ levels during temperature surges, suggesting that the addition of CM increased the meltability of LMPS mozzarella cheese during temperature increases. Camel milk addition affected the physicochemical, microstructural, and rheological properties of LMPS mozzarella cheese.


Assuntos
Queijo , Animais , Camelus , Queijo/análise , Manipulação de Alimentos/métodos , Leite/química , Proteólise , Bovinos
9.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144679

RESUMO

Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.


Assuntos
Oligossacarídeos , Prebióticos , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Aditivos Alimentares , Gases , Humanos , Oligossacarídeos/metabolismo , Sementes/metabolismo
10.
J Dairy Sci ; 104(9): 9450-9464, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147215

RESUMO

The objective of this study was to assess protein degradation and biological activities of the water-soluble extract (WSE) and the 10 kDa permeable and nonpermeable fractions of in vitro digesta of low-fat Akawi cheese made from blends (100:0, 85:15, or 70:30) of bovine milk and camel milk and ripened for 28 d. Biological activities, such as antioxidant activities, amylase and glucosidase inhibition, angiotensin-converting enzyme inhibition, and antiproliferative of the WSE, and the 10 kDa permeable and nonpermeable fraction of the digesta were assessed. To identify the nature of the bioaccessible compounds, untargeted metabolomic analysis was carried out by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Higher o-phthaldialdehyde absorbances were observed in cheeses made of bovine-camel milk blends compared with cheese from bovine milk only. The WSE from these blends also exhibited higher angiotensin-converting enzyme inhibitory effects and higher antiproliferative effects than from bovine milk. The results from this study suggest that the use of blends of camel milk and bovine milk can modulate biological activities of low-fat Akawi cheese.


Assuntos
Queijo , Animais , Antioxidantes , Camelus , Bovinos , Queijo/análise , Digestão , Manipulação de Alimentos , Leite
11.
J Dairy Sci ; 104(5): 5279-5284, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663820

RESUMO

Camel milk (CM) is gaining scientific attention due to its potential health and therapeutic benefits. Fermented drinkable yogurts (labans) were prepared from CM and bovine milk (BM) using mixed Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus bacteria supplemented with 1 of 2 hydrocolloids: pectin (0.1-0.3%) or sodium alginate (0.1-0.5%). The different labans were compared by studying their acidity and rheology as well as their structural and sensory properties. The CM and BM labans had titratable acidity values that ranged from 0.85 to 1.27 and 0.61 to 0.93%, respectively. Pectin at 0.2% enhanced the rheological properties of BM labans, but had no effect in CM labans. Sodium alginate at 0.3% and 0.5% increased viscosity, elastic or storage modulus (G'), and viscous or loss modulus (G″) values for both types of laban. Scanning electron microscopy indicated that the CM laban contained lower levels of "spike-like structures" than BM laban, and that the addition of hydrocolloids improved this effect. Quantitative descriptive sensory analysis showed that CM labans fortified with either 0.2% pectin or 0.3% sodium alginate were comparable to commercial BM laban in viscous mouthfeel. Fortified CM labans were more acidic and had stronger flavors than unfortified samples. Overall, this study demonstrated that the addition of sodium alginate or pectin at intermediate levels permits production of palatable CM labans of a satisfactory viscous consistency.


Assuntos
Camelus , Leite , Alginatos , Animais , Bovinos , Fermentação , Pectinas , Streptococcus thermophilus , Iogurte
12.
J Dairy Sci ; 103(12): 11094-11099, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069408

RESUMO

Camel milk has unique physical, nutritional, and technological properties when compared with other milks, especially bovine. Because proteins confer many of the properties of milk and its products, this study aimed to determine the proteins of camel milk, their correlations, and relative distribution. Raw milk samples were collected from 103 dromedary camels in the morning and evening. Capillary electrophoresis results showed wide variation in the concentrations (g/L) of proteins between samples as follows: α-lactalbumin, 0.3 to 2.9; αS1-casein, 2.4 to 10.3; αS2-casein, 0.3 to 3.9; ß-casein, 5.5 to 29.0; κ-casein, 0.1 to 2.4; unknown casein protein 1, 0.0 to 3.4; and unknown casein protein 2, 0.0 to 4.6. The range in percent composition of the 4 caseins were as follows: αS1, 12.7 to 35.3; αS2, 1.8 to 20.8; ß, 42.3 to 77.4; and κ, 0.6 to 17.4. The relative proportion of αS1-, αS2-, ß-, and κ-caseins in camel milk (26:4:67:3, wt/wt) differed from that of bovine milk (38:10:36:12, wt/wt). This difference might explain the dissimilarity between the 2 milks with respect to technical and nutritional properties.


Assuntos
Camelus , Caseínas/análise , Eletroforese Capilar/veterinária , Lactalbumina/análise , Leite/química , Animais , Bovinos , Proteínas do Leite/análise , Valor Nutritivo , Especificidade da Espécie
13.
Compr Rev Food Sci Food Saf ; 16(6): 1206-1218, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33371591

RESUMO

The consumption of omega-3 fatty acids provides a wide range of health benefits. However, the incorporation of these fatty acids in foods is limited because of their high oxidative instability. A new paradigm has emerged to better explain the oxidation mechanism of polyunsaturated fatty acids, which will be discussed here with reference to bulk lipids considered a special case of water in oil microemulsion. This paradigm suggests that lipid oxidation reactions are initiated by heterogeneous catalysis by metal oxides followed by the formation of micelles containing initial hydroperoxides, water, and other amphiphilic compounds. The induction period comes to the end when the formed micelles reach a critical micelle concentration and start to decompose opening the way to intense free radical reactions. Antioxidants and synergists extend the induction period not only by scavenging free radicals but also by stabilizing the micelles. With better understanding of the lipid oxidation mechanism, a tailored choice of antioxidants and synergistic combinations, and efficient encapsulation methods may be optimized to provide stable encapsulates containing highly n-3 polyunsaturated fatty acids. Smart processing and encapsulation technologies utilizing properly stabilized oils as well as optimized packaging parameters aiming to enhance n-3 fatty acid stability by smart selection/design of antioxidants, control of the interfacial physics and chemistry, and elimination of surface oil are needed for this purpose.

14.
J Nutr ; 144(11): 1674-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25332465

RESUMO

BACKGROUND: Alkylresorcinols have proven to be useful biomarkers of whole-grain wheat and rye intake in many nutritional studies. To improve their utility, more knowledge regarding the fate of alkylresorcinols and their metabolites after consumption is needed. OBJECTIVE: The objective of this study was to develop a combined pharmacokinetic model for plasma concentrations of alkylresorcinols and their 2 major metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-propanoic acid (DHPPA). METHODS: The model was established by using plasma samples collected from 3 women and 2 men after a single dose (120 g) of rye bran and validated against fasting plasma concentrations from 8 women and 7 men with controlled rye bran intake (23, 45, or 90 g/d). Alkylresorcinols in the lymph and plasma of a pig fed a single alkylresorcinol dose (1.3 mmol) were quantified to assess absorption. Human ileostomal effluent and pig bile after high and low alkylresorcinol doses were analyzed to evaluate biliary alkylresorcinol metabolite excretion. RESULTS: The model contained 2 absorption compartments: 1 that transferred alkylresorcinols directly to the systematic circulation and 1 in which a proportion of absorbed alkylresorcinols was metabolized before reaching the systemic circulation. Plasma concentrations of alkylresorcinols and their metabolites depended on absorption and formation, respectively, and the mean ± SEM terminal elimination half-life of alkylresorcinols (1.9 ± 0.59 h), DHPPA (1.5 ± 0.26 h), and DHBA (1.3 ± 0.22 h) did not differ. The model accurately predicted alkylresorcinol and DHBA concentrations after repeated alkylresorcinol intake but DHPPA concentration was overpredicted, possibly because of poorly modeled enterohepatic circulation. During the 8 h following administration, <2% of the alkylresorcinol dose was recovered in the lymph. DHPPA was identified in both human ileostomal effluent and pig bile, indicating availability of DHPPA for absorption and enterohepatic circulation. CONCLUSION: Intact alkylresorcinols have advantages over DHBA and DHPPA as plasma biomarkers for whole-grain wheat and rye intake because of lower susceptibility to factors other than alkylresorcinol intake.


Assuntos
Modelos Biológicos , Resorcinóis/química , Resorcinóis/farmacocinética , Animais , Bile/química , Bile/metabolismo , Feminino , Humanos , Hidroxibenzoatos/sangue , Hidroxibenzoatos/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Linfa/química , Linfa/metabolismo , Masculino , Ácidos Fenilpirúvicos , Resorcinóis/sangue , Resorcinóis/metabolismo , Secale/química , Suínos
15.
Foods ; 13(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338516

RESUMO

The camel milk (CM) industry has witnessed a notable expansion in recent years. This expansion is primarily driven by the rising demand for CM and its fermented products. The perceived health and nutritional benefits of these products are mainly responsible for their increasing popularity. The composition of CM can vary significantly due to various factors, including the breed of the camel, its age, the stage of lactation, region, and season. CM contains several beneficial substances, including antimicrobial agents, such as lactoferrin, lysozyme, immunoglobulin G, lactoperoxidase, and N-acetyl-D-glucosaminidase, which protect it from contamination by spoilage and pathogenic bacteria, and contribute to its longer shelf life compared to bovine milk (BM). Nevertheless, certain harmful bacteria, such as Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli, have been detected in CM, which is a significant public health concern. Therefore, it is crucial to understand and monitor the microbial profile of CM and follow good manufacturing practices to guarantee its safety and quality. This review article explores various aspects of CM, including the types of beneficial and harmful bacteria present in it, the composition of the milk, its antimicrobial properties, its shelf life, and the production of fermented CM products.

16.
Food Chem X ; 21: 101073, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235344

RESUMO

Exopolysaccharides (EPSs) are carbohydrate polymers that can be produced from probiotic bacteria. This study characterized the EPSs from Enterococcus faecium (EPS-LB13) and Streptococcus thermophilus (EPS-MLB10) and evaluated their biological and technological potential. The EPSs had high molecular weight and different monosaccharide compositions. The EPSs exhibited various biological activities at 250 mg/L, such as scavenging free radicals (10 % to 88.8 %), enhancing antioxidant capacity (714 to 2848 µg/mL), inhibiting pathogens (53 % to 74 %), and suppressing enzymes and cancer cells (2 % to 83 %), etc. The EPSs supported the growth of beneficial gut bacteria from Proteobacteria, Bacteroidetes, Firmicutes, and Acinetobacter in fecal fermentation with total Short-chain fatty acids production from 5548 to 6023 PPM. Moreover, the EPSs reduced the gelation time of fermented skimmed bovine milk by more than half. These results suggest that the EPSs from LB13 and MLB10 have promising applications in the dairy and pharmaceutical industries.

17.
Food Chem ; 442: 138483, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241989

RESUMO

Valorization of fruit by-products is a crucial area of research for the development of innovative bio-based products. This study investigated the physicochemical properties and health-promoting benefits of date syrup waste, both fermented by Pichia cecembensis or Pichia kudriavzevii (FDSW), and unfermented (CDSW). Metabolomics profiles of these samples were identified post in vitro digestion. FDSW exhibited 42 volatile compounds, including 9 new ones, and contained (-)-epicatechin, tyrosol, and gallic acid. Bioaccessible fractions of FDSW demonstrated substantial α-amylase inhibition, with percentages of 40.7 % and 53.9 %, respectively. FDSW displayed superior cytotoxicity against Caco2 and MCF-7 cancer cell lines, with an average of âˆ¼75 % and 56 %, respectively. Untargeted metabolomics analysis revealed an increase in secondary metabolites, totaling 27 metabolites. LC-QTOF analysis of bioaccessible carbohydrate metabolites in FDSW identified two phytochemical groups, alkaloids, and terpenoids. This study underscores the potential of FDSW for producing value-added bio-based products with desirable characteristics and health benefits.


Assuntos
Frutas , Ácido Gálico , Humanos , Células CACO-2 , Frutas/química , Ácido Gálico/análise , Antioxidantes/análise , Metabolômica
18.
Food Chem ; 444: 138618, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38309077

RESUMO

This study investigated the biological activities, prebiotic potentials, modulating gut microbiota, and rheological properties of polysaccharides derived from date seeds via microwave-assisted deep eutectic solvent systems. Averaged molecular weight (246.5 kDa) and a monosaccharide profile (galacturonic acid: glucose: mannose: fructose: galactose), classifying MPS as a heteropolysaccharide. MPS, at concentrations of 125-1000 µg/mL, demonstrates increasing free radical scavenging activities (DPPH, ABTS, MC, SOD, SORS, and LO), potent antioxidant potential (FRAP: 51.2-538.3 µg/mL; TAC: 28.3-683.4 µg/mL; RP: 18.5-171.2 µg/mL), and dose-dependent antimicrobial activity against common foodborne pathogens. Partially-purified MPS exhibits inhibition against α-glucosidase (79.6 %), α-amylase (85.1 %), and ACE (68.4 %), along with 80 % and 46 % inhibition against Caco-2 and MCF-7 cancer cells, respectively. Results indicate that MPS fosters the growth of beneficial fecal microbiota, including Proteobacteria, Firmicutes, and Actinobacteria, supporting microbes responsible for major SCFAs (acetic, propionic, and butyric acids) production, such as Ruminococcus and Blautia.


Assuntos
Microbioma Gastrointestinal , Humanos , Solventes Eutéticos Profundos , Prebióticos , Micro-Ondas , Células CACO-2 , Polissacarídeos/farmacologia , Polissacarídeos/química , Sementes , Reologia
19.
Food Chem X ; 22: 101354, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623505

RESUMO

Polysaccharides are abundant macromolecules. The study extracted date seed polysaccharides (UPS) using ultrasound-assisted deep eutectic solvent extraction to valorize date seeds. UPS were subjected to comprehensive characterization and evaluation of their bioactivity, prebiotic properties, and their potential to modulate the gut microbiome. Characterization revealed UPS's heteropolysaccharide composition with galactose, mannose, fructose, glucose, and galacturonic acid respectively in 66.1, 13.3, 9.9, 5.4, and 5.1%. UPS showed a concentration-dependent increase of radical scavenging and antioxidant activities, evidenced by FRAP, TAC, and RP assays. They also displayed antimicrobial efficacy against E. coli O157:H7, S. typhimurium, S. aureus, and L. monocytogenes. Rheological analysis showed UPS's elastic-dominant nature with thixotropic tendencies. UPS inhibited α-glycosidase, α-amylase, and ACE up to 86%, and reduced Caco-2 and MCF-7 cell viability by 70% and 46%, respectively. UPS favored beneficial gut microbiota growth, releasing significant SCFAs during fecal fermentation.

20.
Int J Biol Macromol ; 262(Pt 2): 130167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360226

RESUMO

This study investigated the characteristics of polysaccharides from date pomace using microwave-assisted deep eutectic solvents. The impact on the gut microbiota and probiotics growth was examined in vitro. The study also examined its antioxidant properties, ability to inhibit enzymes linked to diabetes and high blood pressure, impact on cell growth, and physical properties. The isolated MPS had an average molecular weight of 8073.38 kDa and contained mannose, galacturonic acid, galactose, glucose, and fructose in specific proportions. At a concentration of 1000 mg/L, MPS showed strong antioxidant activity, with significant scavenging rates in various tests such as DPPH (57.0 ± 1.05 %) and ABTS (66.4 ± 2.48 %). MPS displayed 77 %, 80 %, and 43 % inhibition for α-amylase, α-glucosidase, and ACE-inhibition, respectively. MPS displayed significant antiproliferative effects, achieving 100 % and 99 % inhibition against Caco-2 and MCF-7 cells at 2500 mg/L, respectively. MPS showed broad-spectrum antibacterial properties against both Gram-positive and Gram-negative foodborne bacteria. Gemmiger formicilis, Blautia species, Collinsella aerofaciens, and Bifidobacterium longum showed strong positive correlations, suggesting increased SCFA production. Network analysis indicated species correlations, with 86 % showing negative correlations with Escherichia and Enterococcus saccharolyticus. MPS was abundant in Firmicutes, Actinobacteria, and Proteobacteria phyla. Date pomace could serve as a dietary fiber source, promoting better health.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Humanos , Solventes Eutéticos Profundos , Células CACO-2 , Micro-Ondas , Polissacarídeos/farmacologia , Bactérias Gram-Negativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA