Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(46): e2311957120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931109

RESUMO

Focal conic domains are defects characteristic of layered liquid crystal phases. Their association can build flowers where petals are the ellipses of the Dupin cyclides involved in these defects. We report here the observation of focal conic flowers in cholesteric droplets sessile on a glass surface and surrounded by glycerol. The observation of the droplets in different directions helps to solve the three dimensional architecture of the flower. The effects of the droplet size and of the pitch value are also reported.

2.
Phys Rev Lett ; 130(12): 129901, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027887

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.127.016401.

3.
Proc Natl Acad Sci U S A ; 117(39): 24102-24109, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32934144

RESUMO

We describe a theory of packing hyperboloid "diabolic" domains in bend-free textures of liquid crystals. The domains sew together continuously, providing a menagerie of bend-free textures akin to the packing of focal conic domains in smectic liquid crystals. We show how distinct domains may be related to each other by Lorentz transformations and that this process may lower the elastic energy of the system. We discuss a number of phases that may be formed as a result, including splay-twist analogues of blue phases. We also discuss how these diabolic domains may be subject to "superluminal boosts," yielding defects analogous to shock waves. We explore the geometry of these textures, demonstrating their relation to Milnor fibrations of the Hopf link. Finally, we show how the theory of these domains is unified in four-dimensional space.

4.
Soft Matter ; 17(30): 7076-7085, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34235531

RESUMO

We develop an energetic model that captures the twisting behavior of spindle-shaped polymer microparticles with nematic ordering, which display remarkably different twisting behavior to ordinary nematics confined to spindles. We have previously developed a geometric model of the twisting, based on experimental observations, in which we showed that the twist pattern follows loxodrome spirals [Ansell, et al., Phys. Rev. Lett., 2019, 123, 157801]. In this study, we first consider a spindle-shaped surface and show that the loxodrome twisting behavior of our system can be captured by the Frank free energy of the nematic with an additional term constraining the length of the integral curves of the system. We then extend the ideas of this model to the bulk and explore the parameter space for which the twisted loxodrome solution is energetically favorable.

5.
Proc Natl Acad Sci U S A ; 115(28): 7206-7211, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29929963

RESUMO

Programmable shape-shifting materials can take different physical forms to achieve multifunctionality in a dynamic and controllable manner. Although morphing a shape from 2D to 3D via programmed inhomogeneous local deformations has been demonstrated in various ways, the inverse problem-finding how to program a sheet in order for it to take an arbitrary desired 3D shape-is much harder yet critical to realize specific functions. Here, we address this inverse problem in thin liquid crystal elastomer (LCE) sheets, where the shape is preprogrammed by precise and local control of the molecular orientation of the liquid crystal monomers. We show how blueprints for arbitrary surface geometries can be generated using approximate numerical methods and how local extrinsic curvatures can be generated to assist in properly converting these geometries into shapes. Backed by faithfully alignable and rapidly lockable LCE chemistry, we precisely embed our designs in LCE sheets using advanced top-down microfabrication techniques. We thus successfully produce flat sheets that, upon thermal activation, take an arbitrary desired shape, such as a face. The general design principles presented here for creating an arbitrary 3D shape will allow for exploration of unmet needs in flexible electronics, metamaterials, aerospace and medical devices, and more.

6.
Proc Natl Acad Sci U S A ; 114(17): E3376-E3384, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28411214

RESUMO

In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.

7.
Phys Rev Lett ; 132(21): 210001, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856263
8.
Phys Rev Lett ; 123(15): 157801, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702311

RESUMO

Polymeric particles are strong candidates for designing artificial materials capable of emulating the complex twisting-based functionality observed in biological systems. In this Letter, we provide the first detailed investigation of the swelling behavior of bipolar polymer liquid crystalline microparticles. Deswelling from the spherical bipolar configuration causes the microparticles to contract anisotropically and twist in the process, resulting in a twisted spindle-shaped structure. We propose a model to describe the observed spiral patterns and twisting behavior.

9.
Nature ; 493(7431): 200-5, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23263182

RESUMO

Smoke, fog, jelly, paints, milk and shaving cream are common everyday examples of colloids, a type of soft matter consisting of tiny particles dispersed in chemically distinct host media. Being abundant in nature, colloids also find increasingly important applications in science and technology, ranging from direct probing of kinetics in crystals and glasses to fabrication of third-generation quantum-dot solar cells. Because naturally occurring colloids have a shape that is typically determined by minimization of interfacial tension (for example, during phase separation) or faceted crystal growth, their surfaces tend to have minimum-area spherical or topologically equivalent shapes such as prisms and irregular grains (all continuously deformable--homeomorphic--to spheres). Although toroidal DNA condensates and vesicles with different numbers of handles can exist and soft matter defects can be shaped as rings and knots, the role of particle topology in colloidal systems remains unexplored. Here we fabricate and study colloidal particles with different numbers of handles and genus g ranging from 1 to 5. When introduced into a nematic liquid crystal--a fluid made of rod-like molecules that spontaneously align along the so-called 'director'--these particles induce three-dimensional director fields and topological defects dictated by colloidal topology. Whereas electric fields, photothermal melting and laser tweezing cause transformations between configurations of particle-induced structures, three-dimensional nonlinear optical imaging reveals that topological charge is conserved and that the total charge of particle-induced defects always obeys predictions of the Gauss-Bonnet and Poincaré-Hopf index theorems. This allows us to establish and experimentally test the procedure for assignment and summation of topological charges in three-dimensional director fields. Our findings lay the groundwork for new applications of colloids and liquid crystals that range from topological memory devices, through new types of self-assembly, to the experimental study of low-dimensional topology.

10.
Proc Natl Acad Sci U S A ; 113(19): 5189-94, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27102872

RESUMO

We propose a general theory for surface patterning in many different biological systems, including mite and insect cuticles, pollen grains, fungal spores, and insect eggs. The patterns of interest are often intricate and diverse, yet an individual pattern is robustly reproducible by a single species and a similar set of developmental stages produces a variety of patterns. We argue that the pattern diversity and reproducibility may be explained by interpreting the pattern development as a first-order phase transition to a spatially modulated phase. Brazovskii showed that for such transitions on a flat, infinite sheet, the patterns are uniform striped or hexagonal. Biological objects, however, have finite extent and offer different topologies, such as the spherical surfaces of pollen grains. We consider Brazovskii transitions on spheres and show that the patterns have a richer phenomenology than simple stripes or hexagons. We calculate the free energy difference between the unpatterned state and the many possible patterned phases, taking into account fluctuations and the system's finite size. The proliferation of variety on a sphere may be understood as a consequence of topology, which forces defects into perfectly ordered phases. The defects are then accommodated in different ways. We also argue that the first-order character of the transition is responsible for the reproducibility and robustness of the pattern formation.


Assuntos
Padronização Corporal/fisiologia , Tamanho Celular , Modelos Biológicos , Pólen/fisiologia , Pólen/ultraestrutura , Propriedades de Superfície , Simulação por Computador
11.
Proc Natl Acad Sci U S A ; 113(26): 7106-11, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27222582

RESUMO

Systems with holes, such as colloidal handlebodies and toroidal droplets, have been studied in the nematic liquid crystal (NLC) 4-cyano-4'-pentylbiphenyl (5CB): Both point and ring topological defects can occur within each hole and around the system while conserving the system's overall topological charge. However, what has not been fully appreciated is the ability to manipulate the hole geometry with homeotropic (perpendicular) anchoring conditions to induce complex, saddle-like deformations. We exploit this by creating an array of holes suspended in an NLC cell with oriented planar (parallel) anchoring at the cell boundaries. We study both 5CB and a binary mixture of bicyclohexane derivatives (CCN-47 and CCN-55). Through simulations and experiments, we study how the bulk saddle deformations of each hole interact to create defect structures, including an array of disclination lines, reminiscent of those found in liquid-crystal blue phases. The line locations are tunable via the NLC elastic constants, the cell geometry, and the size and spacing of holes in the array. This research lays the groundwork for the control of complex elastic deformations of varying length scales via geometrical cues in materials that are renowned in the display industry for their stability and easy manipulability.

12.
Biophys J ; 114(6): 1467-1476, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590603

RESUMO

We show that substrates with nonzero Gaussian curvature influence the organization of stress fibers and direct the migration of cells. To study the role of Gaussian curvature, we developed a sphere-with-skirt surface in which a positive Gaussian curvature spherical cap is seamlessly surrounded by a negative Gaussian curvature draping skirt, both with principal radii similar to cell-length scales. We find significant reconfiguration of two subpopulations of stress fibers when fibroblasts are exposed to these curvatures. Apical stress fibers in cells on skirts align in the radial direction and avoid bending by forming chords across the concave gap, whereas basal stress fibers bend along the convex direction. Cell migration is also strongly influenced by the Gaussian curvature. Real-time imaging shows that cells migrating on skirts repolarize to establish a leading edge in the azimuthal direction. Thereafter, they migrate in that direction. This behavior is notably different from migration on planar surfaces, in which cells typically migrate in the same direction as the apical stress fiber orientation. Thus, this platform reveals that nonzero Gaussian curvature not only affects the positioning of cells and alignment of stress fiber subpopulations but also directs migration in a manner fundamentally distinct from that of migration on planar surfaces.


Assuntos
Movimento Celular , Fibras de Estresse/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Camundongos , Distribuição Normal
13.
Phys Rev Lett ; 131(13): 130001, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37831995
14.
Langmuir ; 34(5): 2006-2013, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29303275

RESUMO

Colloidal particles at complex fluid interfaces and within films assemble to form ordered structures with high degrees of symmetry via interactions that include capillarity, elasticity, and other fields like electrostatic charge. Here we study microparticle interactions within free-standing smectic-A films, in which the elasticity arising from the director field distortion and capillary interactions arising from interface deformation compete to direct the assembly of motile particles. New colloidal assemblies and patterns, ranging from 1D chains to 2D aggregates, sensitive to the initial wetting conditions of particles at the smectic film, are reported. This work paves the way to exploiting LC interfaces as a means to direct spontaneously formed, reconfigurable, and optically active materials.

15.
Soft Matter ; 14(33): 6867-6874, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30079410

RESUMO

Boundaries play an important role in the emergence of nematic order in classical liquid crystal systems; we explore their importance in adhesive cells that form active nematics. In particular, we study how cells are affected by an edge, which in our experiments is a boundary between adhesive and non-adhesive domains on a planar surface. We find that such edges induce elongation and direct the migration of isolated fibroblasts. In confluent monolayers, these elongated cells co-align and migrate to form an active, two-dimensional nematic structure in which edges enforce planar alignment and provide local slip to streams of cells that move along them. On an adhesive square island of dimensions 1 mm × 1 mm, cells near the edges in confluent nematic monolayers have enhanced alignment and velocity. The corners of the adhesive island seed defects with signs that depend on the direction of the motion of the streams of cells that meet there. Distortions emerge with rotations of -π/2 to form a -1/4 defect for streams that move clockwise or counterclockwise, and +π/2 to form a +1/4 defect for converging streams. We explore how cells transmit alignment information to each other in the absence of an edge by studying cell pairs and find that while such pairs do co-align, this alignment is only transient and short lived. These results shed light on the importance of edges in imposing nematic order in confluent monolayers and how edges can be used as tools to pattern the long-range organization of cells for tissue engineering applications.

16.
J Chem Phys ; 148(23): 234701, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29935505

RESUMO

We investigate the energetics of droplets sourced by the thermal fluctuations in a system undergoing a first-order transition. In particular, we confine our studies to two dimensions with explicit calculations in the plane and on the sphere. Using an isoperimetric inequality from the differential geometry literature and a theorem on the inequality's saturation, we show how geometry informs the critical droplet size and shape. This inequality establishes a "mean field" result for nucleated droplets. We then study the effects of fluctuations on the interfaces of droplets in two dimensions, treating the droplet interface as a fluctuating line. We emphasize that care is needed in deriving the line curvature energy from the Landau-Ginzburg energy functional and in interpreting the scalings of the nucleation rate with the size of the droplet. We end with a comparison of nucleation in the plane and on a sphere.

17.
Proc Natl Acad Sci U S A ; 112(50): 15291-6, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621729

RESUMO

Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole-dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully "locked," allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM.

18.
Proc Natl Acad Sci U S A ; 112(20): 6336-40, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941380

RESUMO

Rod-like colloids distort fluid interfaces and interact by capillarity. We explore this interaction at the free surface of aligned nematic liquid crystal films. Naive comparison of capillary and elastic energies suggests that particle assembly would be determined solely by surface tension. Here, we demonstrate that, under certain circumstances, the capillary and elastic effects are complementary and each plays an important role. Particles assemble end-to-end, as dictated by capillarity, and align along the easy axis of the director field, as dictated by elasticity. On curved fluid interfaces, however, curvature capillary energies can overcome the elastic orientations and drive particle migration along curvature gradients. Domains of dominant interaction and their transition are investigated.

19.
Proc Natl Acad Sci U S A ; 112(24): 7449-53, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26015582

RESUMO

We use a regular arrangement of kirigami elements to demonstrate an inverse design paradigm for folding a flat surface into complex target configurations. We first present a scheme using arrays of disclination defect pairs on the dual to the honeycomb lattice; by arranging these defect pairs properly with respect to each other and choosing an appropriate fold pattern a target stepped surface can be designed. We then present a more general method that specifies a fixed lattice of kirigami cuts to be performed on a flat sheet. This single pluripotent lattice of cuts permits a wide variety of target surfaces to be programmed into the sheet by varying the folding directions.

20.
Phys Rev Lett ; 118(25): 257801, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696762

RESUMO

Smectic liquid crystals are characterized by layers that have a preferred uniform spacing and vanishing curvature in their ground state. Dislocations in smectics play an important role in phase nucleation, layer reorientation, and dynamics. Typically modeled as possessing one line singularity, the layer structure of a dislocation leads to a diverging compression strain as one approaches the defect center, suggesting a large, elastically determined melted core. However, it has been observed that for large charge dislocations, the defect breaks up into two disclinations [C. E. Williams, Philos. Mag. 32, 313 (1975)PHMAA40031-808610.1080/14786437508219956]. Here we investigate the topology of the composite core. Because the smectic cannot twist, transformations between different disclination geometries are highly constrained. We demonstrate the geometric route between them and show that despite enjoying precisely the topological rules of the three-dimensional nematic, the additional structure of line disclinations in three-dimensional smectics localizes transitions to higher-order point singularities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA