Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677515

RESUMO

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Assuntos
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Ligação a RNA/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cátions , Metilação de DNA , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Tirosina/química , Xenopus laevis
2.
Nat Methods ; 20(4): 569-579, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997816

RESUMO

The ability to quantify structural changes of the endoplasmic reticulum (ER) is crucial for understanding the structure and function of this organelle. However, the rapid movement and complex topology of ER networks make this challenging. Here, we construct a state-of-the-art semantic segmentation method that we call ERnet for the automatic classification of sheet and tubular ER domains inside individual cells. Data are skeletonized and represented by connectivity graphs, enabling precise and efficient quantification of network connectivity. ERnet generates metrics on topology and integrity of ER structures and quantifies structural change in response to genetic or metabolic manipulation. We validate ERnet using data obtained by various ER-imaging methods from different cell types as well as ground truth images of synthetic ER structures. ERnet can be deployed in an automatic high-throughput and unbiased fashion and identifies subtle changes in ER phenotypes that may inform on disease progression and response to therapy.


Assuntos
Retículo Endoplasmático , Semântica , Retículo Endoplasmático/metabolismo
3.
PLoS Biol ; 21(9): e3002284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708127

RESUMO

During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.


Assuntos
Caenorhabditis elegans , Agregados Proteicos , Animais , Envelhecimento , Complexo de Endopeptidases do Proteassoma , Proteostase
4.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38692734

RESUMO

Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease. We use two reported Xenopus models of ALS/FTD (of either sex), the ALS-associated mutant FUS(P525L) and a mimic of hypomethylated FUS, FUS(16R). Both mutants strongly reduced axonal complexity in vivo. We also observed an axon looping defect for FUS(P525L) in the target area, which presumably arises due to errors in stop cue signaling. To assess whether the loss of axon complexity also had a cue-independent component, we assessed axonal cytoskeletal integrity in vitro. Using a novel combination of fluorescence and atomic force microscopy, we found that mutant FUS reduced actin density in the growth cone, altering its mechanical properties. Therefore, FUS mutants may induce defects during early axonal development.


Assuntos
Esclerose Lateral Amiotrófica , Axônios , Demência Frontotemporal , Mutação , Proteína FUS de Ligação a RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Axônios/patologia , Axônios/metabolismo , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Feminino , Masculino , Xenopus laevis , Cones de Crescimento/metabolismo , Humanos , Modelos Animais de Doenças
5.
Chem Rev ; 122(15): 12495-12543, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35759536

RESUMO

Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001606

RESUMO

Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.


Assuntos
Amônia/química , Glutamina/química , Peptídeos/química , Teoria da Densidade Funcional , Fluorescência , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Óptica e Fotônica/métodos
7.
Trends Biochem Sci ; 44(5): 453-466, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30527975

RESUMO

The presynaptic protein α-synuclein (aSyn) is an 'intrinsically disordered protein' that is highly dynamic in conformation. Transient intramolecular interactions between its charged N and C termini, and between its hydrophobic region and the C terminus, prevent self-association. These interactions inhibit the formation of insoluble inclusions, which are the pathological hallmark of Parkinson's disease and many other synucleinopathies. This review discusses how these intramolecular interactions are influenced by the specific environment aSyn is in. We discuss how charge, pH, calcium, and salt affect the physiological structure of monomeric aSyn, and how they may favour the formation of toxic structures. The more we understand the dynamic conformations of aSyn, the better we can design desperately needed therapeutics to prevent disease progression.


Assuntos
alfa-Sinucleína/química , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , alfa-Sinucleína/metabolismo
8.
J Am Chem Soc ; 145(51): 28240-28250, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085801

RESUMO

Although fusogenic liposomes offer a promising approach for the delivery of antibiotic payloads across the cell envelope of Gram-negative bacteria, there is still a limited understanding of the individual nanocarrier interactions with the bacterial target. Using super-resolution microscopy, we characterize the interaction dynamics of positively charged fusogenic liposomes with Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. The liposomes merge with the outer membrane (OM) of Gram-negative bacteria, while attachment or lipid internalization is observed in Gram-positive cells. Employing total internal reflection fluorescence microscopy, we demonstrated liposome fusion with model supported lipid bilayers. For whole E. coli cells, however, we observed heterogeneous membrane integrations, primarily involving liposome attachment and hemifusion events. With increasing lipopolysaccharide length, the likelihood of full-fusion events was reduced. The integration of artificial lipids into the OM of Gram-negative cells led to membrane destabilization, resulting in decreased bacterial vitality, membrane detachment, and improved codelivery of vancomycin─an effective antibiotic against Gram-positive cells. These findings provide significant insights into the interactions of individual nanocarriers with bacterial envelopes at the single-cell level, uncovering effects that would be missed in bulk measurements. This highlights the importance of conducting single-particle and single-cell investigations to assess the performance of next-generation drug delivery platforms.


Assuntos
Escherichia coli , Lipossomos , Lipossomos/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sistemas de Liberação de Medicamentos , Membrana Celular/metabolismo , Bactérias Gram-Negativas
9.
Angew Chem Int Ed Engl ; 62(7): e202212063, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36316279

RESUMO

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2 O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2 O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2 O to D2 O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2 O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Água , Solventes
10.
J Am Chem Soc ; 144(22): 10034-10041, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616634

RESUMO

The aggregation of Aß42 is a hallmark of Alzheimer's disease. It is still not known what the biochemical changes are inside a cell which will eventually lead to Aß42 aggregation. Thermogenesis has been associated with cellular stress, the latter of which may promote aggregation. We perform intracellular thermometry measurements using fluorescent polymeric thermometers to show that Aß42 aggregation in live cells leads to an increase in cell-averaged temperatures. This rise in temperature is mitigated upon treatment with an aggregation inhibitor of Aß42 and is independent of mitochondrial damage that can otherwise lead to thermogenesis. With this, we present a diagnostic assay which could be used to screen small-molecule inhibitors to amyloid proteins in physiologically relevant settings. To interpret our experimental observations and motivate the development of future models, we perform classical molecular dynamics of model Aß peptides to examine the factors that hinder thermal dissipation. We observe that this is controlled by the presence of ions in its surrounding environment, the morphology of the amyloid peptides, and the extent of its hydrogen-bonding interactions with water. We show that aggregation and heat retention by Aß peptides are favored under intracellular-mimicking ionic conditions, which could potentially promote thermogenesis. The latter will, in turn, trigger further nucleation events that accelerate disease progression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Fragmentos de Peptídeos/metabolismo , Termogênese
11.
Anal Chem ; 94(48): 16711-16719, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36413494

RESUMO

In Parkinson's disease and other synucleinopathies, α-synuclein misfolds and aggregates. Its intrinsically disordered nature, however, causes it to adopt several meta-stable conformations stabilized by internal hydrogen bonding. Because they interconvert on short timescales, monomeric conformations of disordered proteins are difficult to characterize using common structural techniques. Few techniques can measure the conformations of monomeric α-synuclein, including millisecond hydrogen/deuterium-exchange mass spectrometry (HDX-MS). Here, we demonstrate a new approach correlating millisecond HDX-MS data with aggregation kinetics to determine the localized structural dynamics that underpin the self-assembly process in full-length wild-type monomeric α-synuclein. Our custom instrumentation and software enabled measurement of the amide hydrogen-exchange rates on the millisecond timescale for wild-type α-synuclein monomer up to residue resolution and under physiological conditions, mimicking those in the extracellular, intracellular, and lysosomal cellular compartments. We applied an empirical correction to normalize measured hydrogen-exchange rates and thus allow comparison between drastically different solution conditions. We characterized the aggregation kinetics and morphology of the resulting fibrils and correlate these with structural changes in the monomer. Applying a correlative approach to connect molecular conformation to aggregation in α-synuclein for the first time, we found that the central C-terminal residues of α-synuclein are driving its nucleation and thus its aggregation. We provide a new approach to link the local structural dynamics of intrinsically disordered proteins to functional attributes, which we evidence with new details on our current understanding of the relationship between the local chemical environment and conformational ensemble bias of monomeric α-synuclein.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Medição da Troca de Deutério , Doença de Parkinson/metabolismo , Conformação Proteica
12.
Anal Chem ; 94(13): 5367-5374, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333515

RESUMO

Conventional in vitro aggregation assays often involve tagging with extrinsic fluorophores, which can interfere with aggregation. We propose the use of intrinsic amyloid fluorescence lifetime probed using two-photon excitation and represented by model-free phasor plots as a label-free assay to characterize the amyloid structure. Intrinsic amyloid fluorescence arises from the structured packing of ß-sheets in amyloids and is independent of aromatic-based fluorescence. We show that different amyloids [i.e., α-Synuclein (αS), ß-Lactoglobulin (ßLG), and TasA] and different polymorphic populations of αS (induced by aggregation in salt-free and salt buffers mimicking the intra-/extracellular environments) can be differentiated by their unique fluorescence lifetimes. Moreover, we observe that disaggregation of the preformed fibrils of αS and ßLG leads to increased fluorescence lifetimes, distinct from those of their fibrillar counterparts. Our assay presents a medium-throughput method for rapid classification of amyloids and their polymorphs (the latter of which recent studies have shown lead to different disease pathologies) and for testing small-molecule inhibitory compounds.


Assuntos
Amiloide , alfa-Sinucleína , Amiloide/química , Proteínas Amiloidogênicas , Fluorescência , Conformação Proteica em Folha beta , alfa-Sinucleína/química
13.
J Biol Chem ; 295(30): 10138-10152, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32385113

RESUMO

Mitochondrial dysfunction has long been implicated in the neurodegenerative disorder Parkinson's disease (PD); however, it is unclear how mitochondrial impairment and α-synuclein pathology are coupled. Using specific mitochondrial inhibitors, EM analysis, and biochemical assays, we report here that intramitochondrial protein homeostasis plays a major role in α-synuclein aggregation. We found that interference with intramitochondrial proteases, such as HtrA2 and Lon protease, and mitochondrial protein import significantly aggravates α-synuclein seeding. In contrast, direct inhibition of mitochondrial complex I, an increase in intracellular calcium concentration, or formation of reactive oxygen species, all of which have been associated with mitochondrial stress, did not affect α-synuclein pathology. We further demonstrate that similar mechanisms are involved in amyloid-ß 1-42 (Aß42) aggregation. Our results suggest that, in addition to other protein quality control pathways, such as the ubiquitin-proteasome system, mitochondria per se can influence protein homeostasis of cytosolic aggregation-prone proteins. We propose that approaches that seek to maintain mitochondrial fitness, rather than target downstream mitochondrial dysfunction, may aid in the search for therapeutic strategies to manage PD and related neuropathologies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteostase , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Feminino , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fragmentos de Peptídeos/genética , Ratos , Ratos Sprague-Dawley , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , alfa-Sinucleína/genética
14.
Chembiochem ; 22(9): 1546-1558, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33326160

RESUMO

Temperature is a fundamental physical parameter that influences biological processes in living cells. Hence, intracellular temperature mapping can be used to derive useful information reflective of thermodynamic properties and cellular behaviour. Herein, existing publications on different thermometry systems, focusing on those that employ fluorescence-based techniques, are reviewed. From developments based on fluorescent proteins and inorganic molecules to metal nanoclusters and fluorescent polymers, the general findings of intracellular measurements from different research groups are discussed. Furthermore, the contradiction of mitochondrial thermogenesis and nuclear-cytoplasmic temperature differences to current thermodynamic understanding are highlighted. Lastly, intracellular thermometry is proposed as a tool to quantify the energy flow and cost associated with amyloid-ß42 (Aß42) aggregation, a hallmark of Alzheimer's disease.


Assuntos
Doenças Neurodegenerativas/patologia , Agregados Proteicos , Termometria/métodos , Peptídeos beta-Amiloides/metabolismo , Corantes Fluorescentes/química , Humanos , Nanopartículas/química , Doenças Neurodegenerativas/metabolismo , Temperatura
15.
Biochemistry ; 59(48): 4563-4572, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237763

RESUMO

The initial state of the intrinsically disordered protein α-synuclein (aSyn), e.g., the presence of oligomers and degradation products, or the presence of contaminants and adducts can greatly influence the aggregation kinetics and toxicity of the protein. Here, we compare four commonly used protocols for the isolation of recombinant aSyn from Escherichia coli: boiling, acid precipitation, ammonium sulfate precipitation, and periplasmic lysis followed by ion exchange chromatography and gel filtration. We identified, using nondenaturing electrospray ionization mass spectrometry, that aSyn isolated by acid precipitation and periplasmic lysis was the purest and yielded the highest percentage of monomeric protein, 100% and 96.5%, respectively. We then show that aSyn purified by the different protocols exerts different metabolic stresses in cells, with the more multimeric/degraded and least pure samples leading to a larger increase in cell vitality. However, the percentage of monomeric protein and the purity of the samples did not correlate with aSyn aggregation propensity. This study highlights the importance of characterizing monomeric aSyn after purification, as the choice of purification method can significantly influence the outcome of a subsequent study.


Assuntos
alfa-Sinucleína/isolamento & purificação , Linhagem Celular , Sobrevivência Celular , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Cromatografia Líquida , Escherichia coli/química , Escherichia coli/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Microscopia Eletrônica de Transmissão , Agregados Proteicos , Conformação Proteica , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , alfa-Sinucleína/química , alfa-Sinucleína/genética
16.
J Biol Chem ; 294(5): 1478-1487, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504224

RESUMO

The 42-amino-acid ß-amyloid (Aß42) is a critical causative agent in the pathology of Alzheimer's disease. The hereditary Arctic mutation of Aß42 (E22G) leads to increased intracellular accumulation of ß-amyloid in early-onset Alzheimer's disease. However, it remains largely unknown how the Arctic mutant variant leads to aggressive protein aggregation and increased intracellular toxicity. Here, we constructed stable cell lines expressing fluorescent-tagged wildtype (WT) and E22G Aß42 to study the aggregation kinetics of the Arctic Aß42 mutant peptide and its heterogeneous structural forms. Arctic-mutant peptides assemble and form fibrils at a much faster rate than WT peptides. We identified five categories of intracellular aggregate-oligomers, single fibrils, fibril bundles, clusters, and aggresomes-that underline the heterogeneity of these Aß42 aggregates and represent the progression of Aß42 aggregation within the cell. Fluorescence-lifetime imaging (FLIM) and 3D structural illumination microscopy (SIM) showed that all aggregate species displayed highly compact structures with strong affinity between individual fibrils. We also found that aggregates formed by Arctic mutant Aß42 were more resistant to intracellular degradation than their WT counterparts. Our findings uncover the structural basis of the progression of Arctic mutant Aß42 aggregation in the cell.


Assuntos
Peptídeos beta-Amiloides/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Mutação , Imagem Óptica/métodos , Multimerização Proteica , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/ultraestrutura , Humanos , Cinética , Modelos Moleculares , Conformação Proteica
17.
J Biol Chem ; 294(1): 257-268, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30401748

RESUMO

The mechanisms leading to self-assembly of misfolded proteins into amyloid aggregates have been studied extensively in the test tube under well-controlled conditions. However, to what extent these processes are representative of those in the cellular environment remains unclear. Using super-resolution imaging of live cells, we show here that an amyloidogenic polyglutamine-containing protein first forms small, amorphous aggregate clusters in the cytosol, chiefly by diffusion. Dynamic interactions among these clusters limited their elongation and led to structures with a branched morphology, differing from the predominantly linear fibrils observed in vitro Some of these clusters then assembled via active transport at the microtubule-organizing center and thereby initiated the formation of perinuclear aggresomes. Although it is widely believed that aggresome formation is entirely governed by active transport along microtubules, here we demonstrate, using a combined approach of advanced imaging and mathematical modeling, that diffusion is the principal mechanism driving aggresome expansion. We found that the increasing surface area of the expanding aggresome increases the rate of accretion caused by diffusion of cytosolic aggregates and that this pathway soon dominates aggresome assembly. Our findings lead to a different view of aggresome formation than that proposed previously. We also show that aggresomes mature over time, becoming more compacted as the structure grows. The presence of large perinuclear aggregates profoundly affects the behavior and health of the cell, and our super-resolution imaging results indicate that aggresome formation and development are governed by highly dynamic processes that could be important for the design of potential therapeutic strategies.


Assuntos
Núcleo Celular/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Modelos Biológicos , Peptídeos/farmacocinética , Animais , Feminino , Masculino , Camundongos , Microscopia de Fluorescência
18.
J Am Chem Soc ; 142(14): 6661-6674, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182066

RESUMO

Mitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic cation, the in vivo delivery of free drugs still constitutes a critical bottleneck. Herein, we report the design of a mitochondria-targeted metal-organic framework (MOF) that greatly increases the efficacy of a model cancer drug, reducing the required dose to less than 1% compared to the free drug and ca. 10% compared to the nontargeted MOF. The performance of the system is evaluated using a holistic approach ranging from microscopy to transcriptomics. Super-resolution microscopy of MCF-7 cells treated with the targeted MOF system reveals important mitochondrial morphology changes that are clearly associated with cell death as soon as 30 min after incubation. Whole transcriptome analysis of cells indicates widespread changes in gene expression when treated with the MOF system, specifically in biological processes that have a profound effect on cell physiology and that are related to cell death. We show how targeting MOFs toward mitochondria represents a valuable strategy for the development of new drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Estruturas Metalorgânicas/metabolismo , Mitocôndrias/metabolismo , Humanos
19.
Phys Chem Chem Phys ; 21(43): 23931-23942, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31661536

RESUMO

There is a growing body of experimental work showing that protein aggregates associated with amyloid fibrils feature intrinsic fluorescence. In order to understand the microscopic origin of this behavior observed in non-aromatic aggregates of peptides and proteins, we conducted a combined experimental and computational study on the optical properties of amyloid-derived oligopeptides in the near-UV region. We have focused on a few model systems having charged termini (zwitterionic) or acetylated termini. For the zwitterionic system, we were able to simulate the longer tail absorption in the near UV (250-350 nm), supporting the experimental results in terms of excitation spectra. We analyzed the optical excitations responsible for the low-energy absorption and found a large role played by charge-transfer states around the termini. These charge-transfer excitations are very sensitive to the conformation of the peptide and in realistic fibrils may involve inter and intra chain charge reorganization.


Assuntos
Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Teoria da Densidade Funcional , Microscopia de Força Atômica , Espectrofotometria , Termodinâmica
20.
Proc Natl Acad Sci U S A ; 113(14): 3815-9, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993805

RESUMO

New strategies for visualizing self-assembly processes at the nanoscale give deep insights into the molecular origins of disease. An example is the self-assembly of misfolded proteins into amyloid fibrils, which is related to a range of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Here, we probe the links between the mechanism of α-synuclein (AS) aggregation and its associated toxicity by using optical nanoscopy directly in a neuronal cell culture model of Parkinson's disease. Using superresolution microscopy, we show that protein fibrils are taken up by neuronal cells and act as prion-like seeds for elongation reactions that both consume endogenous AS and suppress its de novo aggregation. When AS is internalized in its monomeric form, however, it nucleates and triggers the aggregation of endogenous AS, leading to apoptosis, although there are no detectable cross-reactions between externally added and endogenous protein species. Monomer-induced apoptosis can be reduced by pretreatment with seed fibrils, suggesting that partial consumption of the externally added or excess soluble AS can be significantly neuroprotective.


Assuntos
Amiloide/metabolismo , Apoptose/fisiologia , Neurônios/metabolismo , Agregação Patológica de Proteínas/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Doença de Alzheimer/patologia , Células Cultivadas , Humanos , Doença de Parkinson/patologia , Transporte Proteico , Deficiências na Proteostase/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA