Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 292(26): 10855-10864, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28533434

RESUMO

The lysophosphatidylinositol (LPI) has crucial roles in multiple physiological processes, including insulin exocytosis from pancreatic islets. However, the role of LPI in secretion of glucagon-like peptide-1 (GLP-1), a hormone that enhances glucose-induced insulin secretion, is unclear. Here, we used the murine enteroendocrine L cell line GLUTag and primary murine small intestinal cells to elucidate the mechanism of LPI-induced GLP-1 secretion. Exogenous LPI addition increased intracellular Ca2+ concentrations ([Ca2+] i ) in GLUTag cells and induced GLP-1 secretion from both GLUTag and acutely prepared primary intestinal cells. The [Ca2+] i increase was suppressed by an antagonist for G protein-coupled receptor 55 (GPR55) and by silencing of GPR55 expression, indicating involvement of Gq and G12/13 signaling pathways in the LPI-induced increased [Ca2+] i levels and GLP-1 secretion. However, GPR55 agonists did not mimic many of the effects of LPI. We also found that phospholipase C inhibitor and Rho-associated kinase inhibitor suppressed the [Ca2+] i increase and that LPI increased the number of focal adhesions, indicating actin reorganization. Of note, blockage or silencing of transient receptor potential cation channel subfamily V member 2 (TRPV2) channels suppressed both the LPI-induced [Ca2+] i increase and GLP-1 secretion. Furthermore, LPI accelerated TRPV2 translocation to the plasma membrane, which was significantly suppressed by a GPR55 antagonist. These findings suggest that TRPV2 activation via actin reorganization induced by Gq and G12/13 signaling is involved in LPI-stimulated GLP-1 secretion in enteroendocrine L cells. Because GPR55 agonists largely failed to mimic the effects of LPI, its actions on L cells are at least partially independent of GPR55 activation.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Lisofosfolipídeos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Canais de Cálcio/genética , Células Cultivadas , Adesões Focais/genética , Adesões Focais/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Camundongos , Transporte Proteico/fisiologia , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Canais de Cátion TRPV/genética
2.
J Mol Endocrinol ; 64(3): 133-143, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940281

RESUMO

Glucagon-like peptide-1 (GLP-1), secreted by gastrointestinal enteroendocrine L cells, induces insulin secretion and is important for glucose homeostasis. GLP-1 secretion is induced by various luminal nutrients, including amino acids. Intracellular Ca2+ and cAMP dynamics play an important role in GLP-1 secretion regulation; however, several aspects of the underlying mechanism of amino acid-induced GLP-1 secretion are not well characterized. We investigated the mechanisms underlying the L-glutamine-induced increase in Ca2+ and cAMP intracellular concentrations ([Ca2+]i and [cAMP]i, respectively) in murine enteroendocrine L cell line GLUTag cells. Application of L-glutamine to cells under low extracellular [Na+] conditions, which inhibited the function of the sodium-coupled L-glutamine transporter, did not induce an increase in [Ca2+]i. Application of G protein-coupled receptor family C group 6 member A and calcium-sensing receptor antagonist showed little effect on [Ca2+]i and [cAMP]i; however, taste receptor type 1 member 3 (TAS1R3) antagonist suppressed the increase in [cAMP]i. To elucidate the function of TAS1R3, which forms a heterodimeric umami receptor with taste receptor type 1 member 1 (TAS1R1), we generated TAS1R1 and TAS1R3 mutant GLUTag cells using the CRISPR/Cas9 system. TAS1R1 mutant GLUTag cells exhibited L-glutamine-induced increase in [cAMP]i, whereas some TAS1R3 mutant GLUTag cells did not exhibit L-glutamine-induced increase in [cAMP]i and GLP-1 secretion. These findings suggest that TAS1R3 is important for L-glutamine-induced increase in [cAMP]i and GLP-1 secretion. Thus, TAS1R3 may be coupled with Gs and related to cAMP regulation.


Assuntos
Células Enteroendócrinas/efeitos dos fármacos , Glutamina/farmacologia , Receptores de Aminoácido/fisiologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células L , Camundongos , Receptores de Aminoácido/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Via Secretória/efeitos dos fármacos , Via Secretória/genética , Transdução de Sinais/efeitos dos fármacos
3.
Front Neurosci ; 9: 499, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793048

RESUMO

Astrocytes comprise a large population of cells in the brain and are important partners to neighboring neurons, vascular cells, and other glial cells. Astrocytes not only form a scaffold for other cells, but also extend foot processes around the capillaries to maintain the blood-brain barrier. Thus, environmental chemicals that exist in the blood stream could have potentially harmful effects on the physiological function of astrocytes. Although astrocytes are not electrically excitable, they have been shown to function as active participants in the development of neural circuits and synaptic activity. Astrocytes respond to neurotransmitters and contribute to synaptic information processing by releasing chemical transmitters called "gliotransmitters." State-of-the-art optical imaging techniques enable us to clarify how neurotransmitters elicit the release of various gliotransmitters, including glutamate, D-serine, and ATP. Moreover, recent studies have demonstrated that the disruption of gliotransmission results in neuronal dysfunction and abnormal behaviors in animal models. In this review, we focus on the latest technical approaches to clarify the molecular mechanisms of gliotransmitter exocytosis, and discuss the possibility that exposure to environmental chemicals could alter gliotransmission and cause neurodevelopmental disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA