RESUMO
Cyanobacteriochromes (CBCRs) are members of the phytochrome superfamily of photosensor proteins that bind a bilin chromophore. CBCRs exhibit substantial diversity in their absorption wavelengths through a variety of bilin-protein interactions. RcaE is the first discovered cyanobacteriochrome as a regulator of chromatic acclimation, where cyanobacteria optimize the absorption wavelength of their photosynthetic antenna. RcaE undergoes a reversible photoconversion between a green-absorbing (Pg) and a red-absorbing (Pr) states, where the bilin chromophore adopts a deprotonated C15-Z,anti and a protonated C15-E,syn structures, respectively. This photocycle is designated as "protochromic photocycle" as the change of the bilin protonation state is responsible for the large absorption shift. With the guidance of recently determined Pg and Pr structures of RcaE, in this study, we investigated bilin-chromophore interaction by site-directed mutagenesis on three key residues referred to as a protochromic triad and also other conserved residues interacting with the bilin. Among the protochromic triad residues, Glu217 and Lys261 are critical for the formation of the Pr state, while Leu249 is critical for the formation of both Pg and Pr states. Substitution in other conserved residues, including Val218, Phe219, and Pro220 in the wind-up helix and Phe252, Phe214, and Leu209 in a part of the bilin-binding pocket, had less substantial effects on the spectral sensitivity in RcaE. These data provide insights into our understanding of the bilin-chromophore interaction in the protochromic photocycle and also its evolution in the CBCRs.
RESUMO
Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKa, whereas they are directly hydrogen bonded in the ß-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.
Assuntos
Proteínas de Bactérias/química , Pigmentos Biliares/química , Complexos de Proteínas Captadores de Luz/química , Fotorreceptores Microbianos/química , Fitocromo/química , Prótons , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pigmentos Biliares/genética , Pigmentos Biliares/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cianobactérias/química , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pirróis/química , Pirróis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Linear tetrapyrrole compounds (bilins) are chromophores of the phytochrome and cyanobacteriochrome classes of photosensors and light-harvesting phycobiliproteins. Various spectroscopic techniques, such as resonance Raman, Fourier transform-infrared and nuclear magnetic resonance, have been used to elucidate the structures underlying their remarkable spectral diversity, in which the signals are experimentally assigned to specific structures using isotopically labeled bilin. However, current methods for isotopic labeling of bilins require specialized expertise, time-consuming procedures and/or expensive reagents. To address these shortcomings, we established a method for pressurized liquid extraction of phycocyanobilin (PCB) from the phycobiliprotein powder Lina Blue and also the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PCB was efficiently cleaved in ethanol with three extractions (5 min each) under nitrogen at 125�C and 100 bars. A prewash at 75�C was effective for removing cellular pigments of Synechocystis without PCB cleavage. Liquid chromatography and mass spectrometry suggested that PCB was cleaved in the C3-E (majority) and C3-Z (partial) configurations. 15N- and 13C/15N-labeled PCBs were prepared from Synechocystis cells grown with NaH13CO3 and/or Na15NO3, the concentrations of which were optimized based on cell growth and pigmentation. Extracted PCB was reconstituted with a recombinant apoprotein of the cyanobacteriochrome-class photosensor RcaE. Yield of the photoactive holoprotein was improved by optimization of the expression conditions and cell disruption in the presence of Tween 20. Our method can be applied for the isotopic labeling of other PCB-binding proteins and for the commercial production of non-labeled PCB for food, cosmetic and medical applications.
Assuntos
Cianobactérias/metabolismo , Marcação por Isótopo/métodos , Ficobilinas/isolamento & purificação , Ficocianina/isolamento & purificação , Fitocromo/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ficobilinas/química , Ficocianina/química , Synechocystis/metabolismo , TemperaturaRESUMO
Certain cyanobacteria alter their photosynthetic light absorption between green and red, a phenomenon called complementary chromatic acclimation. The acclimation is regulated by a cyanobacteriochrome-class photosensor that reversibly photoconverts between green-absorbing (Pg) and red-absorbing (Pr) states. Here, we elucidated the structural basis of the green/red photocycle. In the Pg state, the bilin chromophore adopted the extended C15-Z,anti structure within a hydrophobic pocket. Upon photoconversion to the Pr state, the bilin is isomerized to the cyclic C15-E,syn structure, forming a water channel in the pocket. The solvation/desolvation of the bilin causes changes in the protonation state and the stability of π-conjugation at the B ring, leading to a large absorption shift. These results advance our understanding of the enormous spectral diversity of the phytochrome superfamily.
Assuntos
Luz , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Aclimatação , Fotossíntese , Fitocromo/metabolismo , Fitocromo/química , Modelos Moleculares , Pigmentos Biliares/metabolismo , Pigmentos Biliares/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Luz VermelhaRESUMO
Cyanobacteriochromes (CBCRs) belong to the phytochrome superfamily of photoreceptors, the members of which utilize a linear tetrapyrrole (bilin) as a chromophore. RcaE is a representative member of a green/red-type CBCR subfamily that photoconverts between a green-absorbing dark state and red-absorbing photoproduct (Pr). Our recent crystallographic study showed that the phycocyanobilin (PCB) chromophore of RcaE adopts a unique C15-E,syn configuration in the Pr state, unlike the typical C15-E,anti configuration for the phytochromes and other CBCRs. Here, we measured Raman spectra of the Pr state of RcaE with 1064 nm excitation and explored the structure of PCB and its interacting residues under physiologically relevant aqueous conditions. We also performed measurements of RcaE in D2O as well as the sample reconstituted with the PCB labeled with 15N or with both 13C and 15N. The observed Raman spectra were analyzed by quantum mechanics/molecular mechanics (QM/MM) calculations together with molecular dynamics simulations. The Raman spectra and their isotope effects were well-reproduced by the simulated spectra of fully protonated PCB with the C15-E,syn configuration and allowed us to assign most of the observed bands. The present vibrational analysis of the all syn bilin chromophore using the QM/MM method will advance future studies on CBCRs and the related proteins by vibrational spectroscopy.