Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 16(1): fov109, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26678749

RESUMO

Saccharomyces cerevisiae is an excellent model organism for lipid research. Here, we have used yeast haploid RAdiation Damage (RAD) deletion strains to study life span and lipid storage patterns. RAD genes are mainly involved in DNA repair mechanism and hence, their deletions have resulted in shorter life span. Viable RAD mutants were screened for non-polar lipid content, and some of the mutants showed significantly high amounts of triacylglycerol (TAG) and steryl ester, besides short chronological life span. Among these, RAD50, MRE11 and XRS2 form a complex, MRX that is involved in homologous recombination that showed an increase in the amount of TAG. Microarray data of single MRX deletions revealed that besides DNA damage signature genes, lipid metabolism genes are also differentially expressed. Lipid biosynthetic genes (LPP1, SLC1) were upregulated and lipid hydrolytic gene (TGL3) was downregulated. We observed that rad50Δ, mre11Δ, xrs2Δ and mrxΔ strains have high number of lipid droplets (LDs) with fragmented mitochondria. These mutants have a short chronological life span compared to wild type. Aged wild-type cells also accumulated TAG with LDs of ∼2.0 µm in diameter. These results suggest that TAG accumulation and big size LDs could be possible markers for premature or normal aging.


Assuntos
Deleção de Genes , Saccharomyces cerevisiae/fisiologia , Triglicerídeos/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise em Microsséries , Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta Gen Subj ; 1866(3): 130064, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958847

RESUMO

BACKGROUND: The Pacific Beetle Cockroach is the only known viviparous cockroach. The pregnant females provide nutrition to the embryos by secreting milk proteins (Lili-Mips), which crystallize in vivo. The crystals that grow in the embryo are heterogeneous in their protein sequence. It is not apparent from the structure determined what role heterogeneity and glycosylation played in crystallization. Lili-Mips are very nutritious. METHODS: Here, we report the cloning of synthesized Lili-Mip genes, their expression in Saccharomyces cerevisiae as secreted proteins, purification, crystallization, and the determination of a three-dimensional structure of one glycosylated and one deglycosylated form. RESULTS: A 2.35 Å structure of the glycosylated form is bound to palmitoleic acid and has several Zn atom mediated interactions. A 1.45 Å structure of the deglycosylated protein reveals a binding pocket that has both oleic and palmitoleic acid bound. Mass-spectrometry shows that oleic acid and palmitoleic acid are bound to the protein. Docking studies suggest that aliphatic chains of lengths 15, 16, and 18 carbons bind well in the pocket. CONCLUSIONS: The recombinantly expressed and secreted protein is glycosylated, has a bound fatty acid, is homogenous in its protein sequences, and readily forms crystals. The deglycosylated protein also crystallizes readily, suggesting that the high crystallizability of this protein is independent of glycosylation. GENERAL SIGNIFICANCE: Lili-Mips belong to the ubiquitous lipocalin family of proteins that bind to a large variety of ligands. While the residues lining the barrel are essential for the affinity of the ligand, our results show the role of side-chain orientations to ligand selectivity.


Assuntos
Proteínas de Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA