RESUMO
We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Delta, the so-called ionic Hubbard model, using cluster dynamical mean-field theory. We find that for large Coulomb repulsion, U >> Delta, the system is a Mott insulator (MI). For weak to intermediate values of Delta, on decreasing U, the Mott gap closes at a critical value Uc1(Delta) beyond which a correlated insulating phase with possible bond order is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Delta) with a finite charge gap at the transition. For large Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary.
RESUMO
The evolution from an anomalous metallic phase to a Mott insulator within the two-dimensional Hubbard model is investigated by means of the cellular dynamical mean-field theory. We show that approaching the density-driven Mott metal-insulator transition the Fermi surface is strongly renormalized and the quasiparticle description breaks down in a very anisotropic fashion. Regions where the quasiparticles are strongly scattered (hot spots) and regions where the scattering rate is relatively weak (cold spot) form irrespective of whether the parent insulator has antiferromagnetic long-range order, while their location is not universal and is determined by the interplay of the renormalization of the scattering rate and the Fermi surface shape.